期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Low-Temperature Denitrification Performance of Cu2O/Activated Carbon Catalysts for Selective Catalytic Reduction of NOx by CO 被引量:2
1
作者 汪德富 黄帮福 +3 位作者 龙红明 施哲 刘兰鹏 李露 《Journal of Donghua University(English Edition)》 EI CAS 2020年第5期382-388,共7页
To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstru... To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas. 展开更多
关键词 thermal oxidation coconut shell activated carbon(AC) Cu2O/AC CATALYST carbon monoxide selective catalytic reduction(CO-SCR) denitrification performance
下载PDF
Microstructure and mechanical properties analysis of β-tricalcium phosphate/carbon nanotubes scaffold based on rapid prototyping
2
作者 林柳兰 申营营 +1 位作者 张加峰 方明伦 《Journal of Shanghai University(English Edition)》 CAS 2009年第5期349-351,共3页
β-TCP ceramic scaffolds were fabricated with selective laser sintering (SLS) in this work. Carbon nanotubes (CNTs) were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue enginee... β-TCP ceramic scaffolds were fabricated with selective laser sintering (SLS) in this work. Carbon nanotubes (CNTs) were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue engineering scaffolds. Scaffold reconstruction and microstructure analysis were fulfilled based on micro-computed tomography (Micro-CT) scanning data. Results show that the strength of scaffold mixed with 0.2% CNTs reaches 0.819 MPa which has been improved by 85.7% compared with that without CNTs. Micro-CT analysis shows that the scaffold has a good interconnectivity, and pore size mainly distributes in the two regions of 60-340 μm and 500-620 μm. 展开更多
关键词 β-tricalcium phosphate scffold selective laser sintering (SLS) carbon nanotubes (CNTs) mechanical property micro-computed tomography (Micro-CT)
下载PDF
High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor 被引量:3
3
作者 肖泽铧 徐迪 +2 位作者 郝春静 邱剑 刘克富 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期60-65,共6页
Dielectric barrier discharge(DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure.The plasma is generated by an AC power source with a frequency of 6 kHz.In the experiment,the d... Dielectric barrier discharge(DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure.The plasma is generated by an AC power source with a frequency of 6 kHz.In the experiment,the discharge power on the DBD reactor was calculated by a Lissajous figure,and the specific input energy(SIE) of different discharge voltage or residence time was obtained.The concentrations of xylene,carbon monoxide and carbon dioxide in the gas were analyzed by gas chromatography.The spectra of DBD were diagnosed using a spectrometer.We calculated the conversion rate(CR),mineralization rate(MR) and carbon dioxide selectivity.The relationship between these quantities and the SIE was analyzed.The experimental results show that high concentration xylene can be decomposed mostly by DBD plasma.The CR can reach as high as 90%with the main product of carbon dioxide. 展开更多
关键词 dielectric barrier discharge specific input energy conversion rate mineralization rate carbon dioxide selectivity
下载PDF
Selective oxidation of methane and carbon deposition over Fe_2O_3/Ce_(1-x)Zr_xO_2 oxides 被引量:4
4
作者 Xiu-Li Sang Kong-Zhai Li +1 位作者 Hua Wang Yong-Gang Wei 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期230-238,共9页
A series of Fe2O3/Al2O3, Fe2O3/CeO2, Ce0.7Zr0.3O2, and Fe2O3/Ce1-xZrxO2(x = 0.1–0.4) oxides was prepared and their physicochemical features were investigated by X-ray diffraction(XRD), transmission electron micro... A series of Fe2O3/Al2O3, Fe2O3/CeO2, Ce0.7Zr0.3O2, and Fe2O3/Ce1-xZrxO2(x = 0.1–0.4) oxides was prepared and their physicochemical features were investigated by X-ray diffraction(XRD), transmission electron microscope(TEM), and H2-temperature-programmed reduction(H2-TPR) techniques. The gas–solid reactions between these oxides and methane for syngas generation as well as the catalytic performance for selective oxidation of carbon deposition in O2-enriched atmosphere were investigated in detail. The results show that the samples with the presence of Fe2O3show much higher activity for methane oxidation compared with the Ce0.7Zr0.3O2solid solution,while the CeO2-contained samples represent higher CO selectively in methane oxidation than the Fe2O3/Al2O3sample. This suggests that the iron species should be the active sites for methane activation, and the cerium oxides provide the oxygen source for the selective oxidation of the activated methane to syngas during the reaction between methane and Fe2O3/Ce0.7Zr0.3O2. For the oxidation process of the carbon deposition, the CeO2-containing samples show much higher CO selectivity than the Fe2O3/Al2O3sample, which indicates that the cerium species should play a very important role in catalyzing the carbon selective oxidation to CO. The presence of the Ce–Zr–O solid solution could induce the growth direction of the carbonfilament, resulting in a loose contact between the carbon filament and the catalyst. This results in abundant exposed active sites for catalyzing carbon oxidation, strongly improving the oxidation rate of the carbon deposition over this sample. In addition, the Fe2O3/Ce0.7Zr0.3O2also represents much higher selectivity(ca. 97 %) for the conversion of carbon to CO than the Fe2O3/CeO2sample, which can be attributed to the higher concentration of reduced cerium sites on this sample. The increase of the Zr content in the Fe2O3/Ce1-xZrxO2samples could improve the reactivity of the materials for methane oxidation, but it also reduces the selectivity for CO formation. 展开更多
关键词 Methane carbon deposition Gas–solid reaction Selective oxidation of carbon Fe2O3/Ce1-xZrxO2 catalysts
原文传递
Hierarchically Porous Carbon Membranes Derived from PAN and Their Selective Adsorption of Organic Dyes 被引量:6
5
作者 吴青芸 Hong-qing Liang +2 位作者 Meng Li Bo-tong Liu 徐志康 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第1期23-33,共11页
Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membr... Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membranes possess hierarchical pores, including cellular macropores across the whole membranes and much small pores in the matrix as well as on the pore walls. Nitrogen adsorption indicates micropores(1.47 and 1.84 nm) and mesopores(2.21 nm) exist inside the carbon membranes, resulting in their specific surface area as large as 1062 m2/g. The carbon membranes were used to adsorb organic dyes(methyl orange, Congo red, and rhodamine B) from aqueous solutions based on their advantages of hierarchical pore structures and large specific surface area. It is particularly noteworthy that the membranes present a selective adsorption towards methyl orange, whose molecular size(1.2 nm) is smaller than those of Congo red(2.3 nm) and rhodamine B(1.8 nm). This attractive result can be attributed to the steric structure matching between the molecular size and the pore size, rather than electrostatic attraction. Furthermore, the used carbon membranes can be easily regenerated by hydrochloric acid, and their recovery adsorption ratio maintains above 90% even in the third cycle. This work may provide a new route for carbon-based adsorbents with hierarchical pores via a template-free approach, which could be promisingly applied to selectively remove dye contaminants in aqueous effluents. 展开更多
关键词 carbon membranes Polyacrylonitrile Thermally induced phase separation Methyl orange Selective adsorption
原文传递
Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange--Influence of material properties,sorption mechanism and modeling 被引量:6
6
作者 Falk Schuricht Ekaterina S.Borovinskaya Wladimir Reschetilowski 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期160-170,共11页
Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the ad... Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. 展开更多
关键词 PFOS Activated carbon Anion exchange resin Sorption kinetics modeling Sorption isotherm selectivity of sorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部