期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Evaluation of Carbon Sequestration Potential of Soils―What Is Missing? 被引量:1
1
作者 Haruna Adamu Yuguda Abubakar Umar +1 位作者 Hannatu Akanang Ahmed Sabo 《Journal of Geoscience and Environment Protection》 2021年第8期39-47,共9页
It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmo... It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmospheric CO<sub>2</sub> concentration. However, the stability and flux of soil organic carbon are affected in response to changes that are being driven by forms of environmental and anthropogenic factors. Therefore, to establish carbon sequestration potential of soils, an in-depth scientific evaluation that would provide mapping of and speciation of carbon chemical forms, as well as factors influencing the persistence of carbon in soils are key to the process which are beyond quantitative measurements that are conventionally implemented under different land use and/or soil management. This involves soil chemistry, physics, biology, and microbiology. Hence, this short review communication highlights portions of soil chemistry and physics as well as soil biology and microbiology that have not been given attention in determining and/or underpinning decisions on carbon sequestration potential of soils. 展开更多
关键词 SOIL carbon sequestration potential Climate Change MITIGATION
下载PDF
Carbon Sequestration Potential of Tree Species at Isabela State University Wildlife Sanctuary (ISUWS), Cabagan, Isabela, Philippines
2
作者 Julius G. Pascua Gerryc P. Alfonso Rocel S. Galicia 《Open Journal of Ecology》 2021年第5期462-473,共12页
This study is conducted to assess the amount of carbon stored in the above-ground biomass of the tree species at the Isabela State University Wildlife Sanctuary (ISUWS). A total of 34 different tree species were found... This study is conducted to assess the amount of carbon stored in the above-ground biomass of the tree species at the Isabela State University Wildlife Sanctuary (ISUWS). A total of 34 different tree species were found with 285 individuals were identified with a total of 47.50 t/ha Carbon stock and 164.09 t/ha of accumulated CO<sub>2</sub>. It was found in the study that<em> Alstonia scholaris</em> contains the largest amount of above-ground biomass (AGB) with a mass of 20.97 t/ha and Carbon stock of 9.44 t/ha followed by <em>Samanea saman</em> with a mass of 13.40 t/ha and Carbon stock of 6.03 t/ha. Based on the result and conclusion of this investigation, the following recommendations were drawn: Conduct a study concerning the carbon emission of the area to determine the relationship with its carbon sequestration potential;and conduct tree planting activity to open areas in the study site to increase its carbon stock potential and fully serve the purpose of the area as a wildlife sanctuary. 展开更多
关键词 carbon sequestration potential Tree Species Isabela State University Wildlife Sanctuary
下载PDF
Modeling the effects of land-use optimization on the soil organic carbon sequestration potential 被引量:4
3
作者 姚静韬 孔祥斌 《Journal of Geographical Sciences》 SCIE CSCD 2018年第11期1641-1658,共18页
Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that lan... Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that land-use changes can significantly influence the se- questration of SOC. However, the SOC sequestration potential (SOCP, the difference between the saturation and the existing content of SOC) caused by land-use change, and the effects of land-use optimization on the SOCP are still not well understood. In this research, we modeled the effects of land-use optimization on SOCP in Beijing. We simulated three land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial restriction scenario) and assessed their effects on SOCP. The total SOCP (0-20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would de- crease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems. 展开更多
关键词 soil organic carbon saturation carbon sequestration potential land-use change MODELING BEIJING
原文传递
Carbon storage in a wolfberry plantation chronosequence established on a secondary saline land in an arid irrigated area of Gansu Province,China 被引量:1
4
作者 MA Quanlin WANG Yaolin +2 位作者 LI Yinke SUN Tao Eleanor MILNE 《Journal of Arid Land》 SCIE CSCD 2018年第2期202-216,共15页
Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an impor... Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas. 展开更多
关键词 Lycium barbaum biomass carbon soil organic carbon carbon sequestration potential secondary saline land wolfberry plantation carbon dynamics
下载PDF
SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China 被引量:3
5
作者 TIAN Zheng WU Xiuqin +1 位作者 DAI Erfu ZHAO Dongsheng 《Journal of Arid Land》 SCIE CSCD 2016年第3期364-374,共11页
Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective managemen... Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development. 展开更多
关键词 vegetation cover soil organic carbon potential soil organic carbon storage carbon sequestration MODIS data
下载PDF
中国旱作区土壤有机碳密度三维模拟与固碳潜力估算 被引量:1
6
作者 孙忠祥 白慧卿 +2 位作者 叶回春 卓志清 黄文江 《Journal of Geographical Sciences》 SCIE CSCD 2021年第10期1453-1468,共16页
Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-... Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-dimensional scale,especially lacking of field measured data.We employed the interpolation method with gradient plane nodal function(GPNF)and Shepard(SPD)across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR)of China.The SOCP was estimated using a carbon saturation model.Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×106 and 25,respectively.The soil organic carbon storage(SOCS)of 40 cm and 20 cm soil layers were estimated as 22.28×10^(11)kg and 13.12×10^(11)kg simulated by GPNF method in DFR.The SOCP was estimated as 0.95×10^(11)kg considered as a carbon sink at the 20–40 cm soil layer.Furthermore,the SOCP was estimated as–2.49×10^(11)kg considered as a carbon source at the 0–20 cm soil layer.This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions. 展开更多
关键词 soil organic carbon density gradient plane nodal function soil organic carbon storage soil organic carbon sequestration potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部