In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of th...In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was construc...In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.展开更多
[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promo...[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promote the development of green low-carbon economy in China.[Methods]Based on the data of six forest resource inventories from 1989 to 2018 and related studies,the comprehensive evaluation model of forest carbon sink and forestry economic development,the coupling degree model of forest carbon sink and forestry economic development,and the coupling coordination degree model of forest carbon sink and forestry economic development were adopted.The coupling degree of forest carbon sink and forestry economic development from 1992 to 2018 was analyzed.Stepwise regression and ARIMA model were used to analyze the influencing factors and lagging characteristics of forest carbon sink.The coupling degree between forest carbon sink and forestry economic development in China from 2019 to 2030 was predicted by autoregression and ADF test.The coupling between forest carbon sink and forestry economic development in China and its long-term change characteristics were also discussed in this study.[Results](i)The investment of ecological construction and protection,the actual investment of forestry key ecological projects,GDP and the import of forest products had a significant impact on forest resources carbon stock.The total output value of forestry industry,the actually completed investment of forestry key ecological projects and the export volume of forest products had a significant impact on the forest carbon sink,and the actually completed investment of forestry key ecological projects has the greatest impact on the two.(ii)The impact of actually completed investment of forestry key ecological projects had a lag of 2 years on the forest resources carbon stock and a lag of 1 year on the forest carbon sink.When investing in forest carbon sink,it is necessary to make a good plan in advance,and do a good job in forest resources management and time optimization.(iii)From 1992 to 2018,the coupling degree of forest resources carbon stock,forest carbon sink and long-term development of forestry economy in China was gradually increasing.Although there were some fluctuations in the middle time,the coupling degree of forest resources carbon stock and the long-term development of forestry economy increased by 9.24%annually,and the degree of coupling coordination increased from"serious imbalance"in 1992 to"high-quality coordination"in 2018.From 1993 to 2018,the coupling degree of forest carbon sink and long-term development of forestry economy increased by 9.63%annually,slightly faster than the coupling coordination degree of forest resources carbon stock and long-term development of forestry economy.The coordination level also rose from level 2 in 1993 to level 10 in 2018.(iv)The prediction shows that the coupling coordination degree of forest resources carbon stock,forest carbon sink and the long-term development of forestry economy would increase from 2019 to 2030.The coupling coordination degree(D)values of both were close to 1,the coordination level was also 10 for a long time,and the degree of coupling coordination was also maintained at the"high-quality coordination"level for a long time.[Conclusions]Forest has multiple benefits of society,economy and ecology,and forest carbon sink is only a benefit output.The long-term coupling analysis of forest carbon sink and forestry economic development is a key point to multiple benefit analysis.The analysis shows that the spillover effect and co-evolution effect of forest carbon sink in China are significant.From 1992 to 2018,the coupling coordination degree of forest carbon sink and forestry economic development was gradually rising.The prediction analysis also indicate that the coupling coordination degree between the forest carbon sink and the long-term development of forestry economy will remain at the level of"high-quality coordination"for a long time from 2019 to 2030.Therefore,improving the level of forest management and maintaining the current trend of increasing forest resources are the key to achieving the goal of carbon peaking and carbon neutrality in China.展开更多
Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However...Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.展开更多
Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sin...Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.展开更多
This study explored the ecological effects of the transformation of carbon source and carbon sink in wetlands, that were discussed from four aspects: atmosphere, ocean, plants and soil. The results showed that the wet...This study explored the ecological effects of the transformation of carbon source and carbon sink in wetlands, that were discussed from four aspects: atmosphere, ocean, plants and soil. The results showed that the wetland changed from carbon sink to carbon source, which led to the increase of CO_2 emissions in the atmosphere and the intensification of greenhouse effect, which made the earth face the threat of global warming. At the same time, the content of CO_2 in seawater is increased; the pH value of seawater decreases; the balance of seawater acid-base is destroyed; and the ocean acidification is caused.展开更多
Today global warming has become one of the most important concerns of environmental science. The redundancy of greenhouse gases in the atmosphere is known as a major factor in this phenomenon. These gases contain wate...Today global warming has become one of the most important concerns of environmental science. The redundancy of greenhouse gases in the atmosphere is known as a major factor in this phenomenon. These gases contain water vapor, carbon dioxide, methane, nitrous oxide, and ozone. The CO2?gas is one of their most effective among these gases. According to scientific warnings, the amount of CO2?gases in the atmosphere has increased by 40% to 45% over the last 50 years. Reducing the abundant gas in the atmosphere requires a good knowledge of related factors involved, including sources that emit gases into the atmosphere and sinks that absorb the gas from the atmosphere. The amount of CO2?gas in the atmosphere has been accurately measured in previous years with great certainty. But the predicted values of emissions from sources and removals by sinks have large ambiguities. As studies show, even the computed residuals trends (which is obtained by subtracting the amounts of sinks from sources) strongly disagree with the trends of the existence of CO2?in the atmosphere. This study as a preliminary review, proposes a method to identify the locations of sources and sinks of carbon dioxide using global statistical information and adding spatial analysis approaches. By applying this method to the data observed from 2000 to 2011 and the extraction of likely sources and sinks, the region of the Black Sea, near Romania recognized as one of the strong points issued and Bukit Kototabang near Indonesia acknowledged as an Impressive CO2?absorption zone.展开更多
Countryside is rich in large-scale blue and green spaces such as woodland, farmland, grassland and water, which means a great potential of carbon sink. Rural architecture still has a long way to go in terms of low-car...Countryside is rich in large-scale blue and green spaces such as woodland, farmland, grassland and water, which means a great potential of carbon sink. Rural architecture still has a long way to go in terms of low-carbon construction, which makes countryside carbon source and carbon sink significant in researches and practices of realizing objectives of carbon neutral. In view of the problems of current researches on rural carbon source and carbon sink, such as indistinct rural characteristics, incomplete system construction, this paper through sorting out these researches systematically classified the types of countryside carbon source and carbon sink, proposed corresponding strategies, made prospects on researches and practices of countryside carbon source and carbon sink, so as to provide references for future researches.展开更多
With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco...With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.展开更多
[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus ...[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus induction of pepper.Jiayu was taken as a material to study influences of plant growth regulators and concentrations on anther callus induction of pepper according to L16(4^5) orthogonal design.[Result]The average callus and embryoid induction rates of maltose at all concentrations were higher than these of sucrose but the difference was not significant.Taking maltose or sucrose as a carbon source,3% to 6% concentration was good for increasing induction frequencies of calli and embryoids.However,If the concentration was over 6%,the induction rates were declined dramatically with the increase of sugar concentration.The influences of growth regulators on induction rate of calli were listed as 2,4-D﹥ZT﹥NAA﹥KT﹥6-BA;the influences on induction rates of embryoids were listed as 2,4-D﹥NAA﹥ZT﹥KT﹥6-BA.The 2,4-D,ZT,NAA and KT had signficant or extremely significant influences on induction rates of calli and embryoids.2,4-D,ZT at 1.0 mg/L and NNA,KT at 0.5 mg/L had the best effects.The influences of ZT on calli and embryoids were better than those of KT and 6-BA.1.0 mg/L 2,4-D +1.0 mg/L ZT +0.5 mg/L KT +0.5 mg/L 6-BA was the best regulator combination for induction culture of Jiayu anther.[Conclusion]The experiment provided research basis for anther culture of pepper.展开更多
Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(...Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.展开更多
The ability of constructed wetlands with different plants in nitrate removal were investigated. The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and wat...The ability of constructed wetlands with different plants in nitrate removal were investigated. The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated. The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland. It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in summer and from 10% to 30% in winter, when the nitrate concentration was 30-40 rag/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland. However, the nitrite in the constructed wetland accumulated a little with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the effluent. It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands. The seasonal change may also impact the denitrification.展开更多
The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified...The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.展开更多
Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,...Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.展开更多
Mariculture has rapidly grown worldwide, which might greatly influence the biogeochemical cycle of organic carbon in coastal seas. In this study, several geochemical parameters, including grain size composition, sedim...Mariculture has rapidly grown worldwide, which might greatly influence the biogeochemical cycle of organic carbon in coastal seas. In this study, several geochemical parameters, including grain size composition, sedimentary total organic carbon (TOC), total nitrogen (TN), stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions, were analyzed for surface sediments collected from different mariculture zones of Sanggou Bay and in different seasons. We investigated the composition and distribution of or- ganic matter in surface sediments and further evaluated the contribution of mariculture activities to TOC sources. The TOC and TN contents (mass percentage) in the bay were in the range of 0.14% to 1.45% and 0.03% to 0.20%, respectively. The spatial distribution indicated that sedimentary TOC and TN contents in shellfish monoculture and shellfish-kelp polyculture zones were higher than in other mariculture zones, which might be related to grain size composition and mariculture organisms. Seasonal variations of TOC contents were observed in different mariculture zones. The TOC/TN atomic ratio (C/N),δ13C and δ15N were in the ranges of 5.97 to 10.97, 21.76‰ to 13.14‰ and 2.13‰ to 8.08‰, respectively, implying that sedimentary organic matter in Sanggou Bay was the mixture of marine phytoplankton, terrestrial and maricultural sources. A simple mixing model based on δ13C was applied and the results indicated that the relative contributions of organic carbon sources in Sanggou Bay followed the order kelp (36.6%) marine phytoplankton (28.7%) shellfish bio-deposition (23.8%) terrestrial input (10.9%). Surface sediments in Sanggou Bay were domi- nated by mariculture-derived organic carbon, which on average accounted for 60.4% of TOC.展开更多
Organic carbon (OC), total nitrogen (TN), and ^210Pb in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the ...Organic carbon (OC), total nitrogen (TN), and ^210Pb in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using ^210Pb chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.展开更多
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC...During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.展开更多
基金financially supported by Xinjiang Oilfield Company of China(Grant No.2020-C4006)。
文摘In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
基金supported by the Hebei Social Science Foundation Project(Grant No.HB20YJ018)2023 Hebei Province Social Science Development Research Project(Grant No.20230103005)Education Department of Hebei Province Graduate Student Innovation Ability Training Funding Project(Grant No.CXZZSS2023130).
文摘In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.
基金Supported by National Natural Science Foundation of China(72173011).
文摘[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promote the development of green low-carbon economy in China.[Methods]Based on the data of six forest resource inventories from 1989 to 2018 and related studies,the comprehensive evaluation model of forest carbon sink and forestry economic development,the coupling degree model of forest carbon sink and forestry economic development,and the coupling coordination degree model of forest carbon sink and forestry economic development were adopted.The coupling degree of forest carbon sink and forestry economic development from 1992 to 2018 was analyzed.Stepwise regression and ARIMA model were used to analyze the influencing factors and lagging characteristics of forest carbon sink.The coupling degree between forest carbon sink and forestry economic development in China from 2019 to 2030 was predicted by autoregression and ADF test.The coupling between forest carbon sink and forestry economic development in China and its long-term change characteristics were also discussed in this study.[Results](i)The investment of ecological construction and protection,the actual investment of forestry key ecological projects,GDP and the import of forest products had a significant impact on forest resources carbon stock.The total output value of forestry industry,the actually completed investment of forestry key ecological projects and the export volume of forest products had a significant impact on the forest carbon sink,and the actually completed investment of forestry key ecological projects has the greatest impact on the two.(ii)The impact of actually completed investment of forestry key ecological projects had a lag of 2 years on the forest resources carbon stock and a lag of 1 year on the forest carbon sink.When investing in forest carbon sink,it is necessary to make a good plan in advance,and do a good job in forest resources management and time optimization.(iii)From 1992 to 2018,the coupling degree of forest resources carbon stock,forest carbon sink and long-term development of forestry economy in China was gradually increasing.Although there were some fluctuations in the middle time,the coupling degree of forest resources carbon stock and the long-term development of forestry economy increased by 9.24%annually,and the degree of coupling coordination increased from"serious imbalance"in 1992 to"high-quality coordination"in 2018.From 1993 to 2018,the coupling degree of forest carbon sink and long-term development of forestry economy increased by 9.63%annually,slightly faster than the coupling coordination degree of forest resources carbon stock and long-term development of forestry economy.The coordination level also rose from level 2 in 1993 to level 10 in 2018.(iv)The prediction shows that the coupling coordination degree of forest resources carbon stock,forest carbon sink and the long-term development of forestry economy would increase from 2019 to 2030.The coupling coordination degree(D)values of both were close to 1,the coordination level was also 10 for a long time,and the degree of coupling coordination was also maintained at the"high-quality coordination"level for a long time.[Conclusions]Forest has multiple benefits of society,economy and ecology,and forest carbon sink is only a benefit output.The long-term coupling analysis of forest carbon sink and forestry economic development is a key point to multiple benefit analysis.The analysis shows that the spillover effect and co-evolution effect of forest carbon sink in China are significant.From 1992 to 2018,the coupling coordination degree of forest carbon sink and forestry economic development was gradually rising.The prediction analysis also indicate that the coupling coordination degree between the forest carbon sink and the long-term development of forestry economy will remain at the level of"high-quality coordination"for a long time from 2019 to 2030.Therefore,improving the level of forest management and maintaining the current trend of increasing forest resources are the key to achieving the goal of carbon peaking and carbon neutrality in China.
基金Project supported by Beijing Natural Science Foundation(Grant No.2182065)the National Natural Science Foundation of China(Grant No.11922202)。
文摘Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.
基金This project was supported fi nancially by the National Key Research and Development Program of China(2016YFA0600803)the National Natural Science Foundation of China(31370461).
文摘Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.
文摘This study explored the ecological effects of the transformation of carbon source and carbon sink in wetlands, that were discussed from four aspects: atmosphere, ocean, plants and soil. The results showed that the wetland changed from carbon sink to carbon source, which led to the increase of CO_2 emissions in the atmosphere and the intensification of greenhouse effect, which made the earth face the threat of global warming. At the same time, the content of CO_2 in seawater is increased; the pH value of seawater decreases; the balance of seawater acid-base is destroyed; and the ocean acidification is caused.
文摘Today global warming has become one of the most important concerns of environmental science. The redundancy of greenhouse gases in the atmosphere is known as a major factor in this phenomenon. These gases contain water vapor, carbon dioxide, methane, nitrous oxide, and ozone. The CO2?gas is one of their most effective among these gases. According to scientific warnings, the amount of CO2?gases in the atmosphere has increased by 40% to 45% over the last 50 years. Reducing the abundant gas in the atmosphere requires a good knowledge of related factors involved, including sources that emit gases into the atmosphere and sinks that absorb the gas from the atmosphere. The amount of CO2?gas in the atmosphere has been accurately measured in previous years with great certainty. But the predicted values of emissions from sources and removals by sinks have large ambiguities. As studies show, even the computed residuals trends (which is obtained by subtracting the amounts of sinks from sources) strongly disagree with the trends of the existence of CO2?in the atmosphere. This study as a preliminary review, proposes a method to identify the locations of sources and sinks of carbon dioxide using global statistical information and adding spatial analysis approaches. By applying this method to the data observed from 2000 to 2011 and the extraction of likely sources and sinks, the region of the Black Sea, near Romania recognized as one of the strong points issued and Bukit Kototabang near Indonesia acknowledged as an Impressive CO2?absorption zone.
文摘Countryside is rich in large-scale blue and green spaces such as woodland, farmland, grassland and water, which means a great potential of carbon sink. Rural architecture still has a long way to go in terms of low-carbon construction, which makes countryside carbon source and carbon sink significant in researches and practices of realizing objectives of carbon neutral. In view of the problems of current researches on rural carbon source and carbon sink, such as indistinct rural characteristics, incomplete system construction, this paper through sorting out these researches systematically classified the types of countryside carbon source and carbon sink, proposed corresponding strategies, made prospects on researches and practices of countryside carbon source and carbon sink, so as to provide references for future researches.
基金Supported by National Modern Agricultural Technology System(CARS-46)NationalSci-tech Support Plan(2012BAD25B05,2012BAD25B01)National Department PublicBenefit Research Foundation(201203083)~~
文摘With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.
文摘[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus induction of pepper.Jiayu was taken as a material to study influences of plant growth regulators and concentrations on anther callus induction of pepper according to L16(4^5) orthogonal design.[Result]The average callus and embryoid induction rates of maltose at all concentrations were higher than these of sucrose but the difference was not significant.Taking maltose or sucrose as a carbon source,3% to 6% concentration was good for increasing induction frequencies of calli and embryoids.However,If the concentration was over 6%,the induction rates were declined dramatically with the increase of sugar concentration.The influences of growth regulators on induction rate of calli were listed as 2,4-D﹥ZT﹥NAA﹥KT﹥6-BA;the influences on induction rates of embryoids were listed as 2,4-D﹥NAA﹥ZT﹥KT﹥6-BA.The 2,4-D,ZT,NAA and KT had signficant or extremely significant influences on induction rates of calli and embryoids.2,4-D,ZT at 1.0 mg/L and NNA,KT at 0.5 mg/L had the best effects.The influences of ZT on calli and embryoids were better than those of KT and 6-BA.1.0 mg/L 2,4-D +1.0 mg/L ZT +0.5 mg/L KT +0.5 mg/L 6-BA was the best regulator combination for induction culture of Jiayu anther.[Conclusion]The experiment provided research basis for anther culture of pepper.
基金Under the auspices of National Natural Science Foundation of China (No. 52268008, 51768001)。
文摘Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.
基金supported by the National Key Technologies R&D Program of China (No. 2007BAC22B02)
文摘The ability of constructed wetlands with different plants in nitrate removal were investigated. The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated. The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland. It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in summer and from 10% to 30% in winter, when the nitrate concentration was 30-40 rag/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland. However, the nitrite in the constructed wetland accumulated a little with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the effluent. It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands. The seasonal change may also impact the denitrification.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050247016)the Program forNew Century Excellent Talents in University(NCET-05-0387).
文摘The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
基金the auspices of the National!(G1998040800)CAS's Key Project for Basic Research on the Tibetan Plateau! (KZ951-A1-204, KZ95T-
文摘Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.
基金funded by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23050402)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0501-3)+2 种基金the National Natural Science Foundation of China (No. 41276172)the Special Fund of Basic Research for Central non-profit Scientific Research Institute (No. 2014A01 YY01)Special Fund of Basic Research for Chinese Academy of Fishery Sciences (Nos. 2016HY-JC01-01 and 2017GH09)
文摘Mariculture has rapidly grown worldwide, which might greatly influence the biogeochemical cycle of organic carbon in coastal seas. In this study, several geochemical parameters, including grain size composition, sedimentary total organic carbon (TOC), total nitrogen (TN), stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions, were analyzed for surface sediments collected from different mariculture zones of Sanggou Bay and in different seasons. We investigated the composition and distribution of or- ganic matter in surface sediments and further evaluated the contribution of mariculture activities to TOC sources. The TOC and TN contents (mass percentage) in the bay were in the range of 0.14% to 1.45% and 0.03% to 0.20%, respectively. The spatial distribution indicated that sedimentary TOC and TN contents in shellfish monoculture and shellfish-kelp polyculture zones were higher than in other mariculture zones, which might be related to grain size composition and mariculture organisms. Seasonal variations of TOC contents were observed in different mariculture zones. The TOC/TN atomic ratio (C/N),δ13C and δ15N were in the ranges of 5.97 to 10.97, 21.76‰ to 13.14‰ and 2.13‰ to 8.08‰, respectively, implying that sedimentary organic matter in Sanggou Bay was the mixture of marine phytoplankton, terrestrial and maricultural sources. A simple mixing model based on δ13C was applied and the results indicated that the relative contributions of organic carbon sources in Sanggou Bay followed the order kelp (36.6%) marine phytoplankton (28.7%) shellfish bio-deposition (23.8%) terrestrial input (10.9%). Surface sediments in Sanggou Bay were domi- nated by mariculture-derived organic carbon, which on average accounted for 60.4% of TOC.
文摘Organic carbon (OC), total nitrogen (TN), and ^210Pb in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using ^210Pb chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.
基金supported by the National Technology Supporting, Kaifeng Environmental Protec-tion Bureau, Henan Province, China
文摘During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.