期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Graphitized nanocarbon-supported metal catalysts:synthesis,properties,and applications in heterogeneous catalysis 被引量:2
1
作者 黄飞 刘洪阳 苏党生 《Science China Materials》 SCIE EI CSCD 2017年第12期1149-1167,共19页
Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the... Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed. 展开更多
关键词 nanocarbon materials graphitized carbon supports metal catalysts hetergeneous catalysis
原文传递
Novel hollow microsphere with porous carbon shell embedded with Cu/Co bimetal nanoparticles:Facile large-scale preparation and catalytic hydrogenation performance 被引量:1
2
作者 Gaiping Du Ran Liu +3 位作者 Qianqian Jia Gang Han Zhenguo An Jingjie Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期44-53,共10页
Non-noble bimetals have attracted extensive attention for their natural aboundance and low cost,but it remains a big challenge to design and synthesize novel supported non-noble bimetal nanocatalyst in a controllable ... Non-noble bimetals have attracted extensive attention for their natural aboundance and low cost,but it remains a big challenge to design and synthesize novel supported non-noble bimetal nanocatalyst in a controllable and high-efficient manner.Herein,a novel hollow spherical supported non-noble bimetal nanocatalyst with porous carbon shell as the continuous matrix and Cu/Co bimetal nanoparticles as the dispersion phase is successfully fabricated by a convenient strategy involving spray drying and subsequent heat treatment.The morphology and microstructure depend catalyst activity of the hollow spherical supported catalyst has been studied systematically.It is found that the heating temperature plays a critical role in determining the microstructure and catalytic performance of the products.With an optimal heating temperature of 600°C,the corresponding product exhibits the highest normalized reaction rate constant(k_(n))of 25.4 s^(-1)g^(-1)for catalytic reduction of 4-notrophenol,which can be attributed to the suitable synergism of the well-defined bimetal structure,combined effect of the two metallic phases and the metal-support interaction.This work provides an additional strategy for the simultaneous formation of both the support and the active loading phase of supported non-noble bimetal nanocatalyst,and may shed some light on the high-efficiency synthesis of other supported heterostructure with various compositions and properties. 展开更多
关键词 carbon supported non-noble catalysts Bimetal nanoparticles Hollow microspheres Catalytic hydrogenation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部