期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Prospects for green steelmaking technology with low carbon emissions in China
1
作者 Zhang Fucheng Hong Lukuo Xu Ying 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期1-24,共24页
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu... The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology. 展开更多
关键词 carbon capture and utilization carbon emission hydrogen metallurgy low-carbon technology steel industry
下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:6
2
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience carbon reduction technologies carbon neutrality Energy transition Underground energy storage carbon capture utilization and storage(CCUS)
下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model 被引量:1
3
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 carbonATE carbon capture utilization and storage(CCUS) Jet fracturing Coupled model Geothermal reservoir
下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
4
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
下载PDF
Technical Perspective of Carbon Capture,Utilization,and Storage 被引量:10
5
作者 Qingyang Lin Xiao Zhang +2 位作者 Tao Wang Chenghang Zheng Xiang Gao 《Engineering》 SCIE EI CAS 2022年第7期27-32,共6页
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo... Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details. 展开更多
关键词 CCUS carbon capture carbon utilization carbon storage Chemical absorption Electrochemical conversion Storage mechanism
下载PDF
Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO_2 and methanol 被引量:14
6
作者 Keng Xuan Yanfeng Pu +3 位作者 Feng Li Jing Luo Ning Zhao Fukui Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期553-566,M0004,共15页
A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonat... A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonate(DMC)from CO2 and CH3OH with 1,1,1-trimethoxymethane(TMM)as a dehydrating agent.The effect of the ZrOCl2·8H2O/BTC molar ratio on the physicochemical properties and catalytic performance of MOF-808-X was investigated.Results showed that a proper ZrOCl2·8H2O/BTC molar ratio during MOF-808-X synthesis was fairly important to reduce the redundant BTC or zirconium clusters trapped in the micropores of MOF-808-X.MOF-808-4,with almost no redundant BTC or zirconium clusters trapped in the micropores,exhibited the largest surface area,micropore size,and the number of acidic-basic sites,and consequently showed the best activity among all MOF-808-X,with the highest DMC yield of 21.5% under the optimal reaction conditions.Moreover,benefiting from the larger micropore size,MOF-808-4 outperformed our previously reported UiO-66-24(12-connected),which had even more acidic-basic sites and larger surface area than MOF-808-4,mainly because the larger micropore size of MOF-808-4 provided higher accessibility for the reactant to the active sites located in the micropores.Furthermore,a possible reaction mechanism over MOF-808-4 was proposed based on the in situ FT-IR results.The effects of different reaction parameters on DMC formation and the reusability of MOF-808-X were also studied. 展开更多
关键词 Metal-organic frameworks MOF-808 Micropore size carbon dioxide utilization Dimethyl carbonate
下载PDF
Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer 被引量:7
7
作者 Hongtao Hang Yanyou WU 《Acta Geochimica》 EI CAS CSCD 2016年第2期130-147,共18页
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plant... The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plants. The net photosynthetic COa assimilation (PN), the photosynthetic assimilation of CO2 and bicarbonate (PN'), the proportion of increased leaf area (lEA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (B j) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among PN, PN' and fLA. PN', not PN, changed synchronously with fLA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31% at 15 mm bicarbonate, respectively. Meanwhile, the propor- tions of exogenous bicarbonate and total bicarbonate uti- lised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11% and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants. 展开更多
关键词 KARST Bicarbonate - Photosynthesis -Inorganic carbonic utilization Stable carbon isotopecomposition
下载PDF
Conversion of carbon dioxide to valuable petrochemicals:An approach to clean development mechanism 被引量:8
8
作者 Farnaz Tahriri Zangeneh Saeed Sahebdelfar Maryam Takht Ravanchi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期219-231,共13页
The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon s... The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea. The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases, modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts. 展开更多
关键词 carbon dioxide utilization C1 chemistry clean development mechanism CATALYSIS greenhouse effects
下载PDF
Effects of carbon anhydrase on utilization of bicarbonate in microalgae:a case study in Lake Hongfeng 被引量:4
9
作者 Haitao Li Yanyou Wu Lihua Zhao 《Acta Geochimica》 EI CAS CSCD 2018年第4期519-525,共7页
A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding ... A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding equal concentrations of NaH13CO3 with different 613C values simultaneously. The inorganic carbon sources were quantified according to the stable carbon isotope composition in the treated microalgae. The effects of extracellular carbonic anhydrase (CAex) on the HCO3 and CO2 utilization pathways were distinguished using acetazolamide, a potent membrane-impermeable carbonic anhydrase inhibitor. The results show utilization of the added HCO3- was only 8% of the total carbon sources in karst lake. The proportion of the HCO3- utilization path- way was 52% of total inorganic carbon assimilation. Therefore, in the natural water of the karst area, the microalgae used less bicarbonate that preexisted in the aqueous medium than CO2 derived from the atmosphere. CAex increased the utilization of inorganic carbon from the atmosphere. The microalgae with CAex had greater carbon sequestration capacity in this karst area. 展开更多
关键词 MICROALGAE carbonic anhydrase Stable carbon isotope Inorganic carbon utilization
下载PDF
Bicarbonate use and carbon dioxide concentrating mechanisms in photosynthetic organisms 被引量:2
10
作者 Yanyou Wu 《Acta Geochimica》 EI CAS CSCD 2021年第5期846-853,共8页
Photosynthesis is crucial to the reduction of carbon dioxide in the atmosphere.The key enzyme of photosynthesis,Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco),has two mutably competing substrates,CO2 and O2.... Photosynthesis is crucial to the reduction of carbon dioxide in the atmosphere.The key enzyme of photosynthesis,Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco),has two mutably competing substrates,CO2 and O2.It has features of carboxylase and oxygenase.Rubisco performs the function of carboxylase to reduce inorganic carbon to form organic substances,which precondition is that more carbon dioxide accumulates around it.Carbon dioxide concentrating mechanisms(CCMs)are vital to cope with the limit of carbon dioxide.Various bicarbonate use pathway has a differential contribution to inorganic carbon assimilation.Bicarbonate transport,extracellular bicarbonate dehydration,or H+-ATPase-driven bicarbonate uptake,which induced CCMs,can support a considerable share of photosynthesis in photosynthetic organisms.However,CCMs in thylakoid membranes may be the most important.The CCMs occurred in the plasma membrane were secondary,evolutionary,and inducible,while CCMs coupled with photosynthetic oxygen evolution in thylakoid membranes,were primitive,major,and indispensable.A hypothetical schematic model of CCMs occurred in the plasma membrane and thylakoid membranes being proposed. 展开更多
关键词 Bicarbonate photolysis Inorganic carbon utilization Plasma membrane PHOTOSYNTHESIS Thylakoid membranes
下载PDF
Differences in carbon source usage by dental plaque in children with and without early childhood caries 被引量:1
11
作者 yan zhao wen-jie zhong +4 位作者 zhe xun qian zhang ye-qing song yun-song liu feng chen 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第4期232-237,共6页
Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provi... Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral micmbiomes, further comprehension of this microbial community's ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities. 展开更多
关键词 Biolog assay carbon source utilization early childhood caries microbial community
下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:5
12
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
下载PDF
Investigation of the role of Ca(OH)2 in the catalytic Alkaline Thermal Treatment of cellulose to produce H2 with integrated carbon capture
13
作者 Maxim R.Stonor Nicholas Ouassil +1 位作者 Jingguang G.Chen Ah-Hyung Alissa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期984-1000,共17页
The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a ca... The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a carbon-neutral process that has the potential to be carbon-negative.This study has shown that the conversion of cellulose tosuppressedcan be achieved through the reforming of gaseous intermediates in a fixed bed of 10%Ni/ZrO2.Reforming occurs at low temperatures≤773 K,which could allow for improved sustainability. 展开更多
关键词 Hydrogen Biomass Alkaline Thermal Treatment Calcium hydroxide Calcium carbonate carbon capture utilization storage Nickel Heterogeneous catalysis Catalytic reforming
下载PDF
Recent advances,challenges,and perspectives on carbon capture 被引量:1
14
作者 Shihan Zhang Yao Shen +11 位作者 Chenghang Zheng Qianqian Xu Yifang Sun Min Huang Lu Li Xiongwei Yang Hao Zhou Heliang Ma Zhendong Li Yuanhang Zhang Wenqing Liu Xiang Gao 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第6期75-104,共30页
Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,... Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application.To that end,this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations.Then,based on a visually bibliometric analysis,the carbon capture remains a hotspot in the CCUS development.Noting that the materials applied in the carbon capture process determines its performance.As a result,the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed.Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed,and insights into the research needs such as material design,process optimization,environmental impact,and technical and economic assessments are provided. 展开更多
关键词 carbon capture utilization and storage Visualization analysis Research hotspots and trends CO_(2)capture technology
原文传递
CO_(2)electrolysis:Advances and challenges in electrocatalyst engineering and reactor design
15
作者 Jiayi Lin Yixiao Zhang +1 位作者 Pengtao Xu Liwei Chen 《Materials Reports(Energy)》 2023年第2期82-102,I0003,共22页
Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts sti... Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts still suffer from high overpotential,and the complex reaction pathways of CO_(2)RR often lead to mixed products.Early research focuses on tuning the binding of reaction intermediates on electrocatalysts,and recent efforts have revealed that the design of electrolysis reactors is equally important for efficient and selective CO_(2)RR.In this review,we present an overview of recent advances and challenges toward achieving high activity and high selectivity in CO_(2)RR at ambient conditions,with a particular focus on the progress of CO_(2)RR electrocatalyst engineering and reactor design.Our discussion begins with three types of electrocatalysts for CO_(2)RR(noble metalbased,none-noble metal-based,and metal-free electrocatalysts),and then we examine systems-level strategies toward engineering specific components of the electrolyzer,including gas diffusion electrodes,electrolytes,and polymer electrolyte membranes.We close with future perspectives on catalyst development,in-situ/operando characterization,and electrolyzer performance evaluation in CO_(2)RR studies. 展开更多
关键词 carbon dioxide utilization carbon dioxide electrochemical reduction Electrocatalyst design Electrolyzer design Gas diffusion electrodes Electrolyte effects Polymer electrolyte membranes
下载PDF
Clean Coal Technologies in China: Current Status and Future Perspectives 被引量:48
16
作者 Shiyan Chang Jiankun Zhuo +2 位作者 Shuo Meng Shiyue Qin Qiang Yao 《Engineering》 SCIE EI 2016年第4期447-459,共13页
Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal... Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage. 展开更多
关键词 Clean coal technologies Power generation Coal conversion Pollution control carbon capture utilization and storage
下载PDF
Characteristics of soil microbial community functional and structure diversity with coverage of Solidago Canadensis L 被引量:11
17
作者 廖敏 谢晓梅 +2 位作者 彭英 柴娟娟 陈娜 《Journal of Central South University》 SCIE EI CAS 2013年第3期749-756,共8页
The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and ... The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and 100% coverage of Solidago canadensis L. using sole carbon source utilization profiles analyses, principle component analysis (PCA) and phospholipid fatty acids (PLFA) profiles analyses. The results show the characteristics of soil microbial community functional and structure diversity in invaded soils strongly changed by Solidago canadensis L. invasion. Solidago canadensis L. invasion tended to result in higher substrate richness, and functional diversity. As compared to the native and ecotones, average utilization of specific substrate guilds of soil microbe was the highest in Solidago canadensis L. monoculture. Soil microbial functional diversity in Solidago canadensis L. monoculture was distinctly separated from the native area and the ecotones. Aerobic bacteria, fungi and actinomycetes population significantly increased but anaerobic bacteria decreased in the soil with Solidago canadensis L. monoculture. The ratio of cyl9:0 to 18:1 co7 gradually declined but mono/sat and fung/bact PLFAs increased when Solidago canadensis L. became more dominant. The microbial community composition clearly separated the native soil from the invaded soils by PCA analysis, especially 18: lco7c, 16: lco7t, 16: lco5c and 18:2co6, 9 were present in higher concentrations for exotic soil. In conclusion, Solidago canadensis L. invasion could create better soil conditions by improving soil microbial community structure and functional diversity, which in turn was more conducive to the growth ofSolidago canadensis L. 展开更多
关键词 sole carbon source utilization phospholipid fatty acids structure diversity functional diversity Solidago canadensis L.
下载PDF
Functional diversity of soil microbial communities in response to supplementing 50% of the mineral N fertilizer with organic fertilizer in an oat field 被引量:6
18
作者 ZHANG Mei-jun JIA Ju-qing +2 位作者 LU Hua FENG Mei-chen YANG Wu-de 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2255-2264,共10页
The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experimen... The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experiment consisted of five treatments:no fertilizer(CK),mineral N fertilizer applied at 90 and 45 kg ha^(-1) N in the form of urea(U1 and U2,respectively),and U2 supplemented with organic fertilizer in the form of sheep manure at 90 and 45 kg ha^(-1) N(U2OM1 and U2OM2,respectively).Each treatment had three replications.The experiment was conducted in 2018 and 2019 in Pinglu District,Shanxi Province,China.The carbon source utilization by soil microbial communities,such as amino acids,amines,carbohydrates,carboxylic acids,and polymers,increased when 50%of the mineral N fertilizer was replaced with organic fertilizer in both years.This result was accompanied by increased richness,dominance,and evenness of the microbial communities.The utilization of amino acid,amine,and carboxylic acid carbon sources and community evenness were further improved when the organic fertilizer amount was doubled in both years.Biplot analysis indicated that amines and amino acids were the most representative of the total carbon source utilization by the soil microbial communities in both years.The highest oat yield was achieved at a total N application rate of 135 kg ha^(-1) in the treatment involving 45 kg ha^(-1) N in the form of urea and 90 kg ha^(-1) N in the form of sheep manure in both years.It was concluded that the application of 50%of the conventional rate of mineral N fertilizer supplemented with an appropriate rate of organic fertilizer enhanced both the functional diversity of soil microbial communities and oat yield.Amine and amino acid carbon sources may be used as a substitute for total carbon sources for assessing total carbon source utilization by soil microbial communities in oat fields in future studies. 展开更多
关键词 organic fertilizer Biolog-Eco soil microbial community carbon source utilization DIVERSITY OATS
下载PDF
Changes of Soil Microbiological Characteristics After Solidago canadensis L. Invasion 被引量:4
19
作者 LIAO Min XIE Xiao-mei +1 位作者 PENG Ying MA Ai-li 《Agricultural Sciences in China》 CAS CSCD 2011年第7期1064-1071,共8页
The relationship between Solidago canadensis L. invasion and soil microbial communities was studied across the invasive gradients varying from 0 to 40, 80, and 100% coverage of S. canadensis. The results showed both s... The relationship between Solidago canadensis L. invasion and soil microbial communities was studied across the invasive gradients varying from 0 to 40, 80, and 100% coverage of S. canadensis. The results showed both soil microbial biomass C (Cmic) and N (Nmic) increased as the coverage of S. canadensis increased. Soil microbial quotient Cmic/Corg (microbial biomass C/organic C) tended to increase linearly with the coverage of S. canadensis. Soil basal respiration (BR) also showed a similar trend. The soil respiratory quotient qCO2 decreased with S. canadensis invasion, and remained at quite a constantly low level in the invasive soils. Sole carbon source utilization profiles analyses indicated that S. canadensis invasion tended to result in higher microbial functional diversity in the soil. Average utilization of specific substrate guilds was highest in the soil with S. canadensis monoculture. Principle component analysis of sole carbon source utilization profiles further indicated that microbial functional diversity in the soil with S. canadensis monoculture was distinctly separated from those soils in the native area and the ecotones. In conclusion, S. canadensis invasion improved soil microbial biomass, respiration and utilization of carbon sources, and decreased qCO2, thus created better soil conditions, which in turn were more conducive to the growth of S. canadensis. 展开更多
关键词 sole carbon source utilization functional diversity microbial biomass microbial respiratory Solidago canadensis
下载PDF
Advanced yolk-shell nanoparticles as nanoreactors for energy conversion 被引量:3
20
作者 Meiwen Wang Yash Boyjoo +2 位作者 Jian Pan Shaobin Wang Jian Liu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第6期970-990,共21页
Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐s... Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐shell structured nanoparticles as nanoreactors for various chemical reactions.A very brief overview of synthetic strategies is provided with emphasis on recent research progress in the last five years.Catalytic applications of these yolk‐shell structured nanoreactors are then discussed by covering photocatalysis,methane reforming and electrochemical conversion.The state of the art research and perspective in future development are also highlighted. 展开更多
关键词 Yolk‐shell nanoreactors Energy conversion applications PHOTOCATALYSIS Fuel cell Utilization of carbon sources
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部