The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev...The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.展开更多
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr...Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.展开更多
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s...Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr...Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.展开更多
Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume ...Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.展开更多
Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar...Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.展开更多
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur...The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.展开更多
Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling me...Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.展开更多
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ...Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong展开更多
The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh lit...The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.展开更多
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to...[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).展开更多
[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Resul...[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Result] The results showed that foliar spraying of the mixture of paclobutrazol and ethephon could effectively inhibit litchi variety 'Feizixiao' to produce winter shoots,promote the flower bud differentiation and improve flower formation rate; meanwhile,this treatment could also increase the contents of ABA and ZR,and the ratios of ABA/IAA,ABA/GA3,ZR/IAA,ZR/GA3,and decrease the contents of IAA and GA3; additionally,it could increase the contents of soluble sugar,starch and total nitrogen,and raise C/N ratio,thus improving the flower formation rate.[Conclusion] Foliar spraying of the mixture of paclobutrazol and ethephon is an effective pathway for solving warmth damage to litchi.展开更多
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area co...The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.展开更多
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using...Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.展开更多
Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up...Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up to 100 cm)and their relationships with crop productivity under the influence of long-term(since 1990)fertilization in the wheat-maize cropping system.Treatments included CK(control),NP(inorganic N and phosphorus(P)fertilizers),NPK(inorganic N,P and potassium fertilizers),NPKM(NPK plus manure),and M(manure).Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.C and N contents were measured at five different depths in 2001 and 2009.The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer(NP and NPK)treatments.The average yield between 2001 and 2009 under the NP,NPK,NPKM,and M treatments(compared with the CK treatment)increased by 38,115,383,and 381%,respectively,for wheat and 348,891,2738,and 1845%,respectively,for maize.Different long-term fertilization treatments significantly changed coarse free particulate(cf POC),fine free particulate(ff POC),intramicroaggregate particulate(i POC),and mineral-associated(m SOC)organic carbon fractions.In the experimental years of 2001 and 2009,soil fractions occurred in the following order for all treatments:m SOC>cf POC>i POC>ff POC.All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.Compared to the inorganic fertilization treatments,manure input enhanced the stocks of SOC and total N in the surface layer(0–20 cm)but decreased SOC and N in the deep soil layer(80–100 cm).This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients,especially N,compared to inorganic fertilization treatments.The findings provide opportunities for understanding deep soil C and N dynamics,which could help mitigate climate change impact on agricultural production and maintain soil health.展开更多
基金This work was supported by Guizhou Provincial Basic Research Program(Natural Science),Grant Number Qiankehejichu-ZK[2021]YB133Guizhou Provincial Scientific and Technological Program,Grant Number Qiankehehoubuzhu[2020]3001National Natural Science Foundation of China-Guizhou Provincial People’s Government Karst Science Research Centre(U1612442).
文摘The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
基金funded by the National Key Research and Development Program of China (2023YFC3206803)the National Natural Science Foundation of China (42271493)
文摘Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.
基金Research and Development Plan Project in Key Fields of Guangdong Province (2020B0101030005)Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120027)+1 种基金Scientific Research Innovation Project of Graduate School of South China Normal University (2024KYLX050)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds, pdjh2024a109)。
文摘Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
基金supported by the ‘‘Doctoral Scientific Research Foundation’’ of Heilongjiang Bayi Agricultural University,Grant No.XDB2015-02 and the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences,Grant No.XDA05050203-04-01
文摘Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248,22208138)Natural Science Foundation of Liaoning Province(2020-MS-137,2023-MS-140)+7 种基金Doctoral Start-up Foundation of Liaoning Province,China(2020-BS-081)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training center(IC180100005)schemesCSIRO Energy center and Kick-Start Project,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)Young Scientific Project of the Department of Education of Liaoning Province(LJKQZ20222263,LQN202008)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization,Anhui University of Technology(CHV22-05).
文摘Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.
基金Supported by the National Natural Science Foundation of China(31360320)~~
文摘Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.
基金Supported by the National Key Research and Development Plan Project(2016YFD0300909-04)。
文摘The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.
基金supported by National Natural Science Foundation of China(No.42077176,No.41976057)Natural Science Foundation of Shanghai(No.20ZR1459700).
文摘Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金National Natural Science Foundation of China (30100144) and by Scientific Committee of Shenyang City (1011501900).
文摘Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong
基金Foundation project: This work was supported by the Knowledge Innova- tion Project of the Chinese Academy of Sciences (KZCX2-YW-416) and the National Natural Science Foundation (90411020)
文摘The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.
基金Supported by the Project of the Basic Research Operation Cost of State Level Research Institutes "Long-term Location Investigation of Basic Data for Rubber Production " ( XJSYWFZX-2008-14 and XJSYWFZX-2007-2)the Project Natural Sciences Fund of Hainan Province (807045)~~
文摘[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).
文摘[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Result] The results showed that foliar spraying of the mixture of paclobutrazol and ethephon could effectively inhibit litchi variety 'Feizixiao' to produce winter shoots,promote the flower bud differentiation and improve flower formation rate; meanwhile,this treatment could also increase the contents of ABA and ZR,and the ratios of ABA/IAA,ABA/GA3,ZR/IAA,ZR/GA3,and decrease the contents of IAA and GA3; additionally,it could increase the contents of soluble sugar,starch and total nitrogen,and raise C/N ratio,thus improving the flower formation rate.[Conclusion] Foliar spraying of the mixture of paclobutrazol and ethephon is an effective pathway for solving warmth damage to litchi.
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
基金National Basic Research Program of China, No.2002CB412401 National Natural Science Foundation of China, No.40506022+1 种基金 No.40506013 Natural Science Foundation of Jiangsu Province, No.BK2006131
文摘The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.
基金financial support from the National Natural Science Foundation of China (Nos. 21476089, 21373091)the Provincial Science and Technology Project of Guangdong (No. 2014A030312007)
文摘Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.
基金financially supported by the National Key Research and Development Program of China(2016YFD0300901 and 2017YFD0800101)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(161032019035,1610132020022 and 1610132020023)。
文摘Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up to 100 cm)and their relationships with crop productivity under the influence of long-term(since 1990)fertilization in the wheat-maize cropping system.Treatments included CK(control),NP(inorganic N and phosphorus(P)fertilizers),NPK(inorganic N,P and potassium fertilizers),NPKM(NPK plus manure),and M(manure).Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.C and N contents were measured at five different depths in 2001 and 2009.The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer(NP and NPK)treatments.The average yield between 2001 and 2009 under the NP,NPK,NPKM,and M treatments(compared with the CK treatment)increased by 38,115,383,and 381%,respectively,for wheat and 348,891,2738,and 1845%,respectively,for maize.Different long-term fertilization treatments significantly changed coarse free particulate(cf POC),fine free particulate(ff POC),intramicroaggregate particulate(i POC),and mineral-associated(m SOC)organic carbon fractions.In the experimental years of 2001 and 2009,soil fractions occurred in the following order for all treatments:m SOC>cf POC>i POC>ff POC.All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.Compared to the inorganic fertilization treatments,manure input enhanced the stocks of SOC and total N in the surface layer(0–20 cm)but decreased SOC and N in the deep soil layer(80–100 cm).This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients,especially N,compared to inorganic fertilization treatments.The findings provide opportunities for understanding deep soil C and N dynamics,which could help mitigate climate change impact on agricultural production and maintain soil health.