期刊文献+
共找到272,152篇文章
< 1 2 250 >
每页显示 20 50 100
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode
1
作者 FAN Ya-feng YI Zong-lin +6 位作者 ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期1015-1026,共12页
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me... Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors. 展开更多
关键词 High-frequency supercapacitors carbon electrodes Doped nitrogen species Adsorption energy DESCRIPTOR
下载PDF
Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change
2
作者 HAN Qifei XU Wei LI Chaofan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1118-1129,共12页
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr... Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally. 展开更多
关键词 carbon dynamics climate change grassland ecosystems nitrogen deposition water stress index
下载PDF
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation
3
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots carbon Microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
4
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
5
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system carbon nitrogen PHOSPHORUS tea quality path analysis
下载PDF
Elucidating the role of embedding dispersed cobalt sites in nitrogen-doped carbon frameworks in Si-based anodes for stable and superior storage
6
作者 Yueying Chen Ping Li +8 位作者 Mianying Huang Chunlei Wu Qianhong Huang Tingyang Xie Xiaoming Lin Akif Zeb Yongbo Wu Zhiguang Xu Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期180-195,共16页
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s... Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials. 展开更多
关键词 Co nanoparticles nitrogen doped carbon Silicon Lithium/sodium storage Metal-organic frameworks(MOFs)
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
7
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(C) nitrogen(N) Phosphorus(P) Pinus koraiensis
下载PDF
Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors
8
作者 Xiaoying Guo Yan Qiao +4 位作者 Zonglin Yi Christian Marcus Pedersen Yingxiong Wang Xiaodong Tian Peide Han 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1427-1439,共13页
The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit... The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications. 展开更多
关键词 Furfural residue Ammonium persulfate Sheet-like carbon Lithium-ion capacitors Hard carbon
下载PDF
Catalytically altering the redox pathway of sulfur in propylene carbonate electrolyte using dual-nitrogen/oxygen-containing carbon
9
作者 Linghui Yu Heng Zhang +9 位作者 Luyuan Paul Wang Samuel Jun Hoong Ong Shibo Xi Bo Chen Rui Guo Ting Wang Yonghua Du Wei Chen Ovadia Lev Zhichuan J.Xu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期224-233,共10页
Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ... Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes. 展开更多
关键词 Energy storage Lithium-sulfur battery Catalytic redox reaction Porous carbon carbonate electrolyte
下载PDF
Determination of Carbon and Nitrogen Isotope Fractions in Tartaric Acid, Oxalic Acid, Glucose and Fructose—National Center of High Technologies of Georgia
10
作者 Lamzira Pharulava Levani Eliashvili +1 位作者 Vakhtang Betlemidze Bachana Sulava 《American Journal of Analytical Chemistry》 CAS 2024年第8期229-240,共12页
Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetabl... Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3]. 展开更多
关键词 Tartaric Acid Oxalic Acid GLUCOSE FRUCTOSE Mass Spectrum Ion Current Intensity Mass Line Mass Number Molecular and Fragment Ions carbon carbon Center
下载PDF
Selenium–nitrogen-co-doped carbon dots increase rice seedling growth and salt resistance
11
作者 Yadong Li Ronghua Xu +5 位作者 Qianying Han Shang Lei Congli Ma Jingyi Qi Yingliang Liu Hongjie Wang 《The Crop Journal》 SCIE CSCD 2024年第5期1496-1501,共6页
Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit... Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress. 展开更多
关键词 carbon dots Rice seedling RESISTANCE Stress signaling Iron homeostasis
下载PDF
Building of lightweight Nb_(2)CT_(x) MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels for high-efficiency electromagnetic wave absorption in X and Ku bands inspired by sea cucumber
12
作者 Jiatong Yan Ce Cui +2 位作者 Wenhao Bai Hong Tang Ronghui Guo 《Nano Research》 SCIE EI CSCD 2024年第11期9261-9274,共14页
The problems of electromagnetic wave(EMW)pollution in X and Ku bands(8–18 GHz)are becoming more and more serious.Therefore,it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness,li... The problems of electromagnetic wave(EMW)pollution in X and Ku bands(8–18 GHz)are becoming more and more serious.Therefore,it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness,lightweight,wide bandwidth and strong EMW absorption.Inspired by the biomorph of sea cucumber,Nb_(2)CT_(x) MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels(Nb_(2)CT_(x)@Co-NC@CFA,Nb_(2)CT_(x)=niobium carbide)were constructed by self-assembly,in-situ chemical deposition and subsequent pyrolysis.The carbon fiber aerogel,as the basic skeleton of sea cucumber,forms lightweight three-dimensional interconnected conductive network,enhances the dielectric loss and extends the multiple reflection and absorption paths of EMW.As the tentacles of sea cucumber surface,Nb_(2)CT_(x) MXene and Co nitrogen-doped carbon nanosheet arrays exist rich heterogeneous interfaces,which play an important role in improving EMW polarization loss and optimizing impedance matching.The minimum reflection loss(RLmin)of Nb_(2)CT_(x)@Co-NC@CFA reaches−54.7 dB at 9.84 GHz(2.36 mm)with a low filling ratio of 10 wt.%and the effective absorption bandwidth(EAB)of Nb_(2)CT_(x)@Co-NC@CFA reaches 2.96 GHz(8.48–11.44 GHz)with 2.36 mm and 5.2 GHz(12.8–18 GHz)with 1.6 mm,covering most of X and Ku bands by adjusting thickness.The radar cross section(RCS)value of Nb_(2)CT_(x)@Co-NC@CFA is 26.64 dB·m^(2),which is lower than that of the perfect electrical conductor(PEC),indicating that Nb_(2)CT_(x)@Co-NC@CFA can effectively decrease the probability of the target being detected by the radar detector.This work provides ideas for design and development of EMW absorbing materials with high-efficiency EMW absorption in X and Ku bands. 展开更多
关键词 bionic sea cucumber Nb_(2)CT_(x)MXene Co nitrogen-doped carbon nanosheet arrays carbon fiber aerogel LIGHTWEIGHT electromagnetic wave absorption
原文传递
Construction of ternary Sn/SnO_(2)/nitrogen-doped carbon superstructures as anodes for advanced lithium-ion batteries
13
作者 Zizhou Shen Xiaotian Guo +7 位作者 Hongye Ding Dianheng Yu Yihao Chen Nana Li Huijie Zhou Songtao Zhang Jun Wu Huan Pang 《Nano Research》 SCIE EI CSCD 2024年第11期9721-9727,共7页
Pristine tin (Sn) and tin dioxide (SnO_(2)) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirabl... Pristine tin (Sn) and tin dioxide (SnO_(2)) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirable conductivity of Sn-based materials lead to undesirable specific capacity. In this work, a nanostructured Sn/SnO_(2)/nitrogen-doped carbon (NC) superstructure was prepared through a facile electrospray-carbonization strategy. The Sn/SnO_(2) nanoparticles (NPs) were uniformly dispersed in a spherical NC matrix, which prevented the volume expansion and aggregation of NPs and facilitated the ion diffusion and charge transfer kinetics. When the optimized Sn/SnO_(2)/NC superstructures were employed as lithium-ion battery anodes, a remarkable specific capacity of 747.9 mAh·g^(−1) over 200 cycles at 0.5 A·g^(−1) and a superior cyclability of 644.1 mAh·g^(−1) over 1000 cycles at 2 A·g^(−1) were obtained. This effective synthetic strategy for synthesizing superstructures provides valuable insights for the advancement of lithium-ion batteries. 展开更多
关键词 tin/tin dioxide nitrogen-doped carbon ELECTROSPRAY lithium-ion batteries
原文传递
Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility:A meta-analysis
14
作者 Xiyan Jiang Xiaojing Wang +7 位作者 Yaqi Qiao Yi Cao Yan Jiao An Yang Mengzhou Liu Lei Ma Mengya Song Shenglei Fu 《Forest Ecosystems》 SCIE CSCD 2024年第3期307-317,共11页
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and... Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition. 展开更多
关键词 C:N:P stoichiometry META-ANALYSIS Forest ecosystem nitrogen addition form Nutrient cycles
下载PDF
Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell
15
作者 Budhi Priyanto Imam Khambali +8 位作者 Irma Septi Ardiani Khoirotun Nadhiyah Anna Zakiyatul Laila M.Chasrun Hasani Bima Romadhon Retno Asih Yoyok Cahyono Triwikantoro Darminto 《Journal of Renewable Materials》 EI CAS 2024年第1期57-69,共13页
An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-vo... An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-voltage relationship of the junction was found to be a Schottky-like contact,and therefore the junction shows the characteristic rectifiers.This means the a-C and a-C:N are semiconductors with different types of conduction.Moreover,the samples showed an increase in current and voltage value when exposed to visible light(bright state)compared to the dark condition,thereby,indicating the creation of electron-hole pairs during the exposure.It was also discovered that the relationship between current and voltage for the a-C/a-C:N junction sample formed a curve that satisfies the rule of the photovoltaic effect when exposed to visible light from a light bulb.The exposure of this sample to direct sunlight at AM 1.5 conditions produced a curve that meets the rules for the emergence of the photovoltaic effect with higher characteristics for the current-voltage relationship.Thus,the a-C/a-C:N junction sample is a solar cell successfully fabricated using a sample method and has a maximum efficiency of 0.0013%. 展开更多
关键词 Solar cell amorphous carbon palmyra sugar
下载PDF
High-efficiently doping nitrogen in kapok fiber-derived hard carbon used as anode materials for boosting rate performance of sodium-ion batteries
16
作者 Tianyun Zhang Tian Zhang +1 位作者 Fujuan Wang Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期472-482,共11页
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan... The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis. 展开更多
关键词 Kapok fiber Hard carbon Electrode materials Rate performance Sodium-ion batteries
下载PDF
Nitrogen⁃doped 3D graphene⁃carbon nanotube network for efficient lithium storage
17
作者 XIE Jie XU Hongnan +3 位作者 LIAO Jianfeng CHEN Ruoyu SUN Lin JIN Zhong 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第10期1840-1849,共10页
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor... A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1). 展开更多
关键词 GRAPHENE carbon nanotube hybrid material ANODE lithium⁃ion battery
下载PDF
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC
18
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon Oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
下载PDF
Integrated in-memory sensor and computing of artificial vision system based on reversible bonding transition-induced nitrogen-doped carbon quantum dots (N-CQDs)
19
作者 Tianqi Yu Jie Li +5 位作者 Wei Lei Suhaidi Shafe Mohd Nazim Mohtar Nattha Jindapetch Paphavee van Dommelen Zhiwei Zhao 《Nano Research》 SCIE EI CSCD 2024年第11期10049-10057,共9页
Carbon quantum dots (CQDs) have been used in memristors due to their attractive optical and electronic properties, which are considered candidates for brain-inspired computing devices. In this work, the performance of... Carbon quantum dots (CQDs) have been used in memristors due to their attractive optical and electronic properties, which are considered candidates for brain-inspired computing devices. In this work, the performance of CQDs-based memristors is improved by utilizing nitrogen-doping. In contrast, nitrogen-doped CQDs (N-CQDs)-based optoelectronic memristors can be driven with smaller programming voltages (−0.6 to 0.7 V) and exhibit lower powers (78 nW/0.29 µW). The physical mechanism can be attributed to the reversible transition between C–N and C=N with lower binding energy induced by the electric field and the generation of photogenerated carriers by ultraviolet light irradiation, which adjusts the conductivity of the initial N-CQDs to implement resistance switching. Importantly, the convolutional image processing based on various cross kernels is efficiently demonstrated by stable multi-level storage properties. An N-CQDs-based optoelectronic reservoir computing implements impressively high accuracy in both no noise and various noise modes when recognizing the Modified National Institute of Standards and Technology (MNIST) dataset. It illustrates that N-CQDs-based memristors provide a novel strategy for developing artificial vision system with integrated in-memory sensor and computing. 展开更多
关键词 nitrogen-doped carbon quantum dots(N-CQDs) optoelectronic memristor reversible bonding transition convolutional image processing reservoir computing
原文传递
Engineering single-atom Mn on nitrogen-doped carbon to regulate lithium-peroxide reaction kinetics for rechargeable lithium-oxygen batteries
20
作者 Yaling Huang Yong Liu +3 位作者 Yang Liu Chenyang Zhang Wenzhang Li Jie Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期199-207,共9页
Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-it... Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-ity,and improving recycling stability of Li-O_(2) batteries.In this work,we employ metal-organic frameworks(MOFs)derivation and ion substitution strategies to construct atomically dispersed Mn-N_(4) moieties on hierarchical porous nitrogen-doped carbon(Mn SAs-NC)with the aim of reducing the over-potential and improving the cycling stability of Li-O_(2) batteries.The porous structure provides more chan-nels for mass transfer and exposes more highly active sites for electrocatalytic reactions,thus promoting the formation and decomposition of Li_(2)O_(2).The Li-O_(2) batteries with Mn SAs-NC cathode achieve lower overpotential,higher specific capacity(14290 mA h g^(-1) at 100 mAg^(-1)),and superior cycle stability(>100 cycles at 200 mA g^(-1))compared with the Mn NPs-NC and NC.Density functional theory(DFT)cal-culations reveal that the construction of Mn-N_(4) moiety tunes the charge distribution of the pyridinic N-rich vacancy and balances the affinity of the intermediates(LiO_(2) and Li_(2)O_(2)).The initial nucleation of Li_(2)O_(2) on Mn SAs-NC favors the O_(2)-→LiO_(2)→Li_(2)O_(2) surface-adsorption pathway,which mitigates the overpoten-tials of the oxygen reduction(ORR)and oxygen evolution reaction(OER).As a result,Mn SAs-NC with Mn-N_(4) moiety effectively facilitates the Li_(2)O_(2) nucleation and enables its reversible decomposition.This work establishes a methodology for constructing carbon-based electrocatalysts with high activity and selectivity for Li-O_(2)batteries. 展开更多
关键词 Single-atom Mn MOFs-oriented architecture Rechargeable Li-O_(2)battery N-doped carbon Density functional theory calculation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部