Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin Rive...Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
The plant biomass and net primary production(NPP) of urban vegetation in Guangzhou were estimated by dimension analysis, tree truck volume, and harvest methods as well as relationship between biomass and NPP and so on...The plant biomass and net primary production(NPP) of urban vegetation in Guangzhou were estimated by dimension analysis, tree truck volume, and harvest methods as well as relationship between biomass and NPP and so on. The biomass and NPP were respectively 2875150t and 1058122 t/a. They were respectively 392495t and 64948 t/a in the built-up area and 2482655t and 993147 t/a in the unbuilt-up area. It would make plant biomass, especially NPP decline obviously, if the unbuilt-up area were changed to the built-up area. The carbon content of plant was 1328649 for the total and 13.78 t/hm 2 for the mean, and amounts of carbon fixed and oxygen made by urban vegetation were respectively 4.80 t/(hm 2·a) and 12.79 t/(hm 2·a) for the mean and 462624 t/a and 1232430 t/a for the total, which were equal to 1.45 times and 1.04 times of those by human breathing. However, they were only equal to 7.61% and 4.97% of amount of carbon released and oxygen consumption in urban Guangzhou. The biomass and NPP of urban vegetation in Guangzhou only corresponded to 7.8% and 47.3% of those of southern subtropical evergreen broad-leaf forest in Dinghu Mountain. Therefore, the roles of Guangzhou urban vegetation in balance of carbon and oxygen would be increased greatly if it could be conserved and improved in some way.展开更多
Global nitrogen (N) budgets for intensive agricultural systems were compiled for a 0.5 by 0.5 degree resolution. These budgets include N inputs (N fertilizer, animal manure, biological N fixation and atmospheric N dep...Global nitrogen (N) budgets for intensive agricultural systems were compiled for a 0.5 by 0.5 degree resolution. These budgets include N inputs (N fertilizer, animal manure, biological N fixation and atmospheric N deposition) and outputs (N removal from the field in harvested crops and grass and grass consumption by grazing animals, ammonia volatilization,denitrification and leaching). Data for the historical years 1970 and 1995 and a projection for 2030 were used to study changes in the recovery of N and the different loss terms for intensive agricultural systems. The results indicate that the overall system N recovery and fertilizer use efficiency slowly increased in the industrialized countries between 1970 and 1995, the values for developing countries have decreased in the same period. For the coming three decades our results indicate a rapid increase in both the industrialized and developing countries. High values of > 80% for fertilizer use efficiency may be related to surface N balance deficits, implying a depletion of soil N and loss of soil fertility. The projected intensification in most developing countries will cause a gradual shift from deficits to surpluses in the coming decades.The projected fast growth of crop and livestock production, and intensification and associated increase in fertilizer inputs will cause a major increase in the surface N balance surplus in the coming three decades. This implies increasing losses of N compounds to air (ammonia, nitrous oxide and nitric oxide), and groundwater and surface water (nitrate).展开更多
Excessive fertilization combined with unreasonable irrigation in farmland of the Hetao Irrigation Area(HIR), China, has resulted in a large amount of nitrogen(N) losses and agricultural non-point source pollution.Appl...Excessive fertilization combined with unreasonable irrigation in farmland of the Hetao Irrigation Area(HIR), China, has resulted in a large amount of nitrogen(N) losses and agricultural non-point source pollution.Application of soil amendments has become one of the important strategies for reducing N losses of farmland.However, there is still no systematic study on the effects of various soil amendments on N losses in the HIR.In this study, three types of soil amendments(biochar, bentonite and polyacrylamide) were applied in a maize–wheat rotation system in the HIR during 2015–2017.Yields of maize and wheat, soil NH3 volatilization, N2O emission and NO3– leaching were determined and soil N balance was estimated.The results showed that applications of biochar, bentonite and polyacrylamide significantly increased yields of maize by 9.2%, 14.3% and 13.3%, respectively, and wheat by 9.2%, 16.6% and 12.3%, respectively, compared with the control(fertilization alone).Applications of biochar, bentonite and polyacrylamide significantly reduced soil N leaching by 23.1%, 35.5% and 27.1%, soil NH3-N volatilization by 34.8%, 52.7% and 37.8%, and soil N surplus by 23.9%, 37.4% and 30.6%, respectively.Applications of bentonite and polyacrylamide significantly reduced N2O-N emissions from soil by 37.3% and 35.8%, respectively, compared with the control.Compared with application of biochar, applications of bentonite and polyacrylamide increased yields of maize and wheat by 5.1% and 3.5%, respectively.Our results suggest that soil amendments(bentonite and polyacrylamide) can play important roles in reducing N losses and increasing yield for the maize–wheat rotation system in the HIR, China.展开更多
The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the ca...The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.展开更多
The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly...The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly determined by varieties.Therefore,we investigated the genetic diversity of chemical compositions of tea tree resources in China to screen excellent germplasm resources.Three chemical compositions index(including chlorophyll index,flavonoid index,and anthocyanin index)and the nitrogen balance index of tea leaves were measured in 102 tea germplasms planted in Chinese Tea Plants Improved Variety Germplasm Resources Nursery(CTPIVGRN)by Dualex on April 152019.Results showed that the chlorophyll,flavonoid,and anthocyanin contents and the nitrogen balance index significantly differed between the 102 tea germplasms.The genetic diversity index values were 2.005,2.246,1.599,and 1.838,and the average genetic diversity was 1.922.The 102 tea germplasms can be divided into four categories by cluster analysis under the genetic distance threshold of 11.These results suggest that the genetic diversity of tea germplasm resources in China is rich.This study’s results can serve as a basis for the diversified development and utilization of tea plant.展开更多
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr...Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.展开更多
AIM: To investigate the effectiveness and safety of recombinant human growth hormone (rhGH) in postoperative patients. METHODS: A total of 48 consecutive patients undergoing abdominal operations were randomized to...AIM: To investigate the effectiveness and safety of recombinant human growth hormone (rhGH) in postoperative patients. METHODS: A total of 48 consecutive patients undergoing abdominal operations were randomized to receive either subcutaneous rhGH (0.15 IU/kg) or placebo (menstruum) injections daily for 7 d after surgery. The two groups had similar nutritional intake. Blood samples for serum fibronecUn, albumin, prealbumin, transferrin and the total lymphocyte count, as well as glucose levels were collected to study the rhGH effect. Basal laboratory evaluation, and nutritional status were estimated on d 1 before as baseline and d 3 and 10 after operation using standard laboratory techniques. Nitrogen balance was measured from d 3 to 9 after operation. RESULTS: The cumulative nitrogen balance was significantly improved in rhGH group compared with the placebo group (11.37 ± 16.82 vs -9.11 ± 17.52, P = 0.0003). Serum fibronectin was also significantly higher in the rhGH group than in the placebo group (104.77 ± 19.94 vs 93.03 ± 16.03, P 〈 0.05), whereas changes in serum albumin, prealbumin, transferrin and total lymphocyte counts were not statistically significant. Mean blood glucose levels were significantly higher in the rhGH group from d 3 to 6 after operation. CONCLUSION: If blood glucose can be controlled, lowdose growth hormone together with hypocaloric nutrition is effective on improving positive nitrogen balance and protein conservation and safe is in postoperative patients.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev...The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.展开更多
The balance between metal and acid sites directly affects the preparation of high-performance cracking catalysts with high heat sink and low coking.Nevertheless,how to control acid-metal sites balance and its relation...The balance between metal and acid sites directly affects the preparation of high-performance cracking catalysts with high heat sink and low coking.Nevertheless,how to control acid-metal sites balance and its relationship with cracking performance are reported scarcely.In this work,a series of Pt/Al_(2)O_(3)-SiO_(2) dual sites catalysts with different metal to acid active sites ratio(C_(M)/C_(SA))were constructed by ethanolassisted impregnation method and the impact on n-decane cracking under supercritical conditions was systematically and deeply investigated.The results showed that the conversion and carbon deposition increased gradually with varied C_(M)/C_(SA)and reached the balance at C_(M)/C_(SA)of 0.13.The proper ratio C_(M)/C_(SA)(0.13)can balance the deep dehydrogenation coking over metal active sites and high heat sink of cracking over acid active sites,the chemical heat sink reaches amazing 1.75 MJ/kg and carbon deposition is only22.03 mg/cm^(2) at 750℃.Meanwhile,the few metal sites at low C_(M)/C_(SA)and the few strong acid sites at high C_(M)/C_(SA)are the main factors limiting the cracking activity.Low C_(M)/C_(SA)limit the activation of C-H bond and deep dehydrogenation of coking precursor,resulting in relative low cracking activity and carbon deposition,while high C_(M)/C_(SA)limit the activation of C-C bond and increase the deep dehydrogenation.In this contribution,design and construction of metal-acid dual sites can not only provide the technical solution for the preparation of high heat sink and low coking cracking catalyst,but also deepen the understanding of the cracking path of hydrocarbon fuel.展开更多
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s...Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.展开更多
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of ex...Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of extremely geographic situation. This study was designed to examine soil CO<sub>2</sub> efflux characteristics of diurnal and seasonal variation, thus obtaining estimates of carbon balance of <em>Kobresia pygmaea</em> meadow in Qinghai-Tibet plateau. The results showed that the soil respiration of diurnal and seasonal rate changed little in growing season and was mainly affected by temperature, and single peak curve that showed afternoon appeared. Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate. The variation range of <em>Q</em><sub>10</sub> ranged from 1.28 to 2.34, which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period. Meanwhile, during the growing seasons the observed amount of annual carbon fixation via primary production for <em>Kobresia pygmaea</em> meadow ecosystem was about 120.21 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. The carbon dioxide output via soil heterotrophic respiration was about 37.54 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. So carbon budget had more input than output. The <em>Kobresia pygmaea</em> meadow ecosystem has stronger potential to absorb carbon dioxide, it was a sink of atmospheric CO<sub>2</sub>, and the plant community had a net carbon gain of 82.67 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>.展开更多
Facing the challenge of climate change, forecasts of energy demand and carbon emissions demand are a key requirement for India to ensure energy security and the balance economic growth. The authors calculate the optim...Facing the challenge of climate change, forecasts of energy demand and carbon emissions demand are a key requirement for India to ensure energy security and the balance economic growth. The authors calculate the optimal economic growth under the balance economic growth path from 2009 to 2050 in India based on the economy-carbon dynamic model. Combination of Intergovernmental Panel on Climate Change (IPCC) 2006 edition of the formula of carbon emissions, energy intensity model, and population model, it gets the carbon emissions demand caused by energy consumption for time span 1980-2008. Then, it estimates the energy consumption demand and carbon emissions demand under the balance economic growth path from 2009 to 2050. The results show that the cumulative amount of energy demand and carbon emissions demand in India for the time span 2009 to 2050, are 44.65 Gtoe and 36.16 Gt C, separately. The annual demand of energy consumption and carbon emissions for India show an inverted U curve from 2009 to 2050. The demand of energy consumption and carbon emissions will peak in 2045, and the peak values are 1290.74 Mtoe and 1045.98 Mt C. Furthermore, India’s per capita energy consumption demand and carbon emissions demand also appear maximum values, which are separately 0.81 toe and 0.65 t C.展开更多
Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adul...Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adults published up to October 2012 was performed, each study were reviewed, and data were abstracted. The studies were first evaluated for heterogeneity. The average protein requirements were analyzed by using the individual data of each included studies. Study site climate, age, sex, and dietary protein source were compared. Results Data for 348 subjects were gathered from 28 nitrogen balance studies. The natural logarithm of requirement for 348 individuals had a normal distribution with a mean of 4.66. The estimated average requirement was the exponentiation of the mean of the log requirement, 105.64 mg N/kg·d. No significant differences between adult age, source of dietary protein were observed. But there was significant difference between sex and the climate of the study site (P〈0.05). Conclusion The estimated average requirement and recommended nutrient intake of the healthy adult population was 105.64 mg N/kg·d (0.66 g high quality protein/kg·d) and 132.05 mg N/kg·d (0.83 g high quality protein/kg·d), respectively.展开更多
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ...To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.展开更多
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金TheNationalNaturalScienceFoundationofChina(No .495 710 64 )andGuangdongEnvironmentalProtectionBureau (No .1999 15 )
文摘The plant biomass and net primary production(NPP) of urban vegetation in Guangzhou were estimated by dimension analysis, tree truck volume, and harvest methods as well as relationship between biomass and NPP and so on. The biomass and NPP were respectively 2875150t and 1058122 t/a. They were respectively 392495t and 64948 t/a in the built-up area and 2482655t and 993147 t/a in the unbuilt-up area. It would make plant biomass, especially NPP decline obviously, if the unbuilt-up area were changed to the built-up area. The carbon content of plant was 1328649 for the total and 13.78 t/hm 2 for the mean, and amounts of carbon fixed and oxygen made by urban vegetation were respectively 4.80 t/(hm 2·a) and 12.79 t/(hm 2·a) for the mean and 462624 t/a and 1232430 t/a for the total, which were equal to 1.45 times and 1.04 times of those by human breathing. However, they were only equal to 7.61% and 4.97% of amount of carbon released and oxygen consumption in urban Guangzhou. The biomass and NPP of urban vegetation in Guangzhou only corresponded to 7.8% and 47.3% of those of southern subtropical evergreen broad-leaf forest in Dinghu Mountain. Therefore, the roles of Guangzhou urban vegetation in balance of carbon and oxygen would be increased greatly if it could be conserved and improved in some way.
基金Project supported by the Netherlands Environmental Assessment Agency, National Institute for Public Health and the Environment (No. S/550005/01/DD) the Canadian International Development Agency, Canada and the Chinese Academy of Sciences, China (No.KZCX2-413)
文摘Global nitrogen (N) budgets for intensive agricultural systems were compiled for a 0.5 by 0.5 degree resolution. These budgets include N inputs (N fertilizer, animal manure, biological N fixation and atmospheric N deposition) and outputs (N removal from the field in harvested crops and grass and grass consumption by grazing animals, ammonia volatilization,denitrification and leaching). Data for the historical years 1970 and 1995 and a projection for 2030 were used to study changes in the recovery of N and the different loss terms for intensive agricultural systems. The results indicate that the overall system N recovery and fertilizer use efficiency slowly increased in the industrialized countries between 1970 and 1995, the values for developing countries have decreased in the same period. For the coming three decades our results indicate a rapid increase in both the industrialized and developing countries. High values of > 80% for fertilizer use efficiency may be related to surface N balance deficits, implying a depletion of soil N and loss of soil fertility. The projected intensification in most developing countries will cause a gradual shift from deficits to surpluses in the coming decades.The projected fast growth of crop and livestock production, and intensification and associated increase in fertilizer inputs will cause a major increase in the surface N balance surplus in the coming three decades. This implies increasing losses of N compounds to air (ammonia, nitrous oxide and nitric oxide), and groundwater and surface water (nitrate).
基金funded by the Inner Mongolia Autonomous Region’s Science and Technology Innovation Guidance Projectthe Hanggin Rear Banner Agricultural Extension Center, Inner Mongolia Autonomous Region, China for its help in this study
文摘Excessive fertilization combined with unreasonable irrigation in farmland of the Hetao Irrigation Area(HIR), China, has resulted in a large amount of nitrogen(N) losses and agricultural non-point source pollution.Application of soil amendments has become one of the important strategies for reducing N losses of farmland.However, there is still no systematic study on the effects of various soil amendments on N losses in the HIR.In this study, three types of soil amendments(biochar, bentonite and polyacrylamide) were applied in a maize–wheat rotation system in the HIR during 2015–2017.Yields of maize and wheat, soil NH3 volatilization, N2O emission and NO3– leaching were determined and soil N balance was estimated.The results showed that applications of biochar, bentonite and polyacrylamide significantly increased yields of maize by 9.2%, 14.3% and 13.3%, respectively, and wheat by 9.2%, 16.6% and 12.3%, respectively, compared with the control(fertilization alone).Applications of biochar, bentonite and polyacrylamide significantly reduced soil N leaching by 23.1%, 35.5% and 27.1%, soil NH3-N volatilization by 34.8%, 52.7% and 37.8%, and soil N surplus by 23.9%, 37.4% and 30.6%, respectively.Applications of bentonite and polyacrylamide significantly reduced N2O-N emissions from soil by 37.3% and 35.8%, respectively, compared with the control.Compared with application of biochar, applications of bentonite and polyacrylamide increased yields of maize and wheat by 5.1% and 3.5%, respectively.Our results suggest that soil amendments(bentonite and polyacrylamide) can play important roles in reducing N losses and increasing yield for the maize–wheat rotation system in the HIR, China.
基金Under the auspices of Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-450, KZCX2-YW-422)
文摘The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.
基金funded by supporting Project No.Qian ke he[2020]1Y71PhD Fund Project No.Zunshi 138[2019]22+2 种基金Education Department of Guizhou Province Scientific Research Project No.Qianjiaohe KY word 2017-023Zunyi City Science and Technology Bureau Project(Zunshike rencai 2020-2Zunshikehe HZ word 2020-15).
文摘The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly determined by varieties.Therefore,we investigated the genetic diversity of chemical compositions of tea tree resources in China to screen excellent germplasm resources.Three chemical compositions index(including chlorophyll index,flavonoid index,and anthocyanin index)and the nitrogen balance index of tea leaves were measured in 102 tea germplasms planted in Chinese Tea Plants Improved Variety Germplasm Resources Nursery(CTPIVGRN)by Dualex on April 152019.Results showed that the chlorophyll,flavonoid,and anthocyanin contents and the nitrogen balance index significantly differed between the 102 tea germplasms.The genetic diversity index values were 2.005,2.246,1.599,and 1.838,and the average genetic diversity was 1.922.The 102 tea germplasms can be divided into four categories by cluster analysis under the genetic distance threshold of 11.These results suggest that the genetic diversity of tea germplasm resources in China is rich.This study’s results can serve as a basis for the diversified development and utilization of tea plant.
基金funded by the National Key Research and Development Program of China (2023YFC3206803)the National Natural Science Foundation of China (42271493)
文摘Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.
文摘AIM: To investigate the effectiveness and safety of recombinant human growth hormone (rhGH) in postoperative patients. METHODS: A total of 48 consecutive patients undergoing abdominal operations were randomized to receive either subcutaneous rhGH (0.15 IU/kg) or placebo (menstruum) injections daily for 7 d after surgery. The two groups had similar nutritional intake. Blood samples for serum fibronecUn, albumin, prealbumin, transferrin and the total lymphocyte count, as well as glucose levels were collected to study the rhGH effect. Basal laboratory evaluation, and nutritional status were estimated on d 1 before as baseline and d 3 and 10 after operation using standard laboratory techniques. Nitrogen balance was measured from d 3 to 9 after operation. RESULTS: The cumulative nitrogen balance was significantly improved in rhGH group compared with the placebo group (11.37 ± 16.82 vs -9.11 ± 17.52, P = 0.0003). Serum fibronectin was also significantly higher in the rhGH group than in the placebo group (104.77 ± 19.94 vs 93.03 ± 16.03, P 〈 0.05), whereas changes in serum albumin, prealbumin, transferrin and total lymphocyte counts were not statistically significant. Mean blood glucose levels were significantly higher in the rhGH group from d 3 to 6 after operation. CONCLUSION: If blood glucose can be controlled, lowdose growth hormone together with hypocaloric nutrition is effective on improving positive nitrogen balance and protein conservation and safe is in postoperative patients.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.
基金This work was supported by Guizhou Provincial Basic Research Program(Natural Science),Grant Number Qiankehejichu-ZK[2021]YB133Guizhou Provincial Scientific and Technological Program,Grant Number Qiankehehoubuzhu[2020]3001National Natural Science Foundation of China-Guizhou Provincial People’s Government Karst Science Research Centre(U1612442).
文摘The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.
基金subsidized by Sichuan Province Science and Technology Program (2023NSFSC0093)Enterprises Entrust Technology Development Program (FJF22KX0055,202302914)。
文摘The balance between metal and acid sites directly affects the preparation of high-performance cracking catalysts with high heat sink and low coking.Nevertheless,how to control acid-metal sites balance and its relationship with cracking performance are reported scarcely.In this work,a series of Pt/Al_(2)O_(3)-SiO_(2) dual sites catalysts with different metal to acid active sites ratio(C_(M)/C_(SA))were constructed by ethanolassisted impregnation method and the impact on n-decane cracking under supercritical conditions was systematically and deeply investigated.The results showed that the conversion and carbon deposition increased gradually with varied C_(M)/C_(SA)and reached the balance at C_(M)/C_(SA)of 0.13.The proper ratio C_(M)/C_(SA)(0.13)can balance the deep dehydrogenation coking over metal active sites and high heat sink of cracking over acid active sites,the chemical heat sink reaches amazing 1.75 MJ/kg and carbon deposition is only22.03 mg/cm^(2) at 750℃.Meanwhile,the few metal sites at low C_(M)/C_(SA)and the few strong acid sites at high C_(M)/C_(SA)are the main factors limiting the cracking activity.Low C_(M)/C_(SA)limit the activation of C-H bond and deep dehydrogenation of coking precursor,resulting in relative low cracking activity and carbon deposition,while high C_(M)/C_(SA)limit the activation of C-C bond and increase the deep dehydrogenation.In this contribution,design and construction of metal-acid dual sites can not only provide the technical solution for the preparation of high heat sink and low coking cracking catalyst,but also deepen the understanding of the cracking path of hydrocarbon fuel.
基金Research and Development Plan Project in Key Fields of Guangdong Province (2020B0101030005)Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120027)+1 种基金Scientific Research Innovation Project of Graduate School of South China Normal University (2024KYLX050)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds, pdjh2024a109)。
文摘Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
文摘Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of extremely geographic situation. This study was designed to examine soil CO<sub>2</sub> efflux characteristics of diurnal and seasonal variation, thus obtaining estimates of carbon balance of <em>Kobresia pygmaea</em> meadow in Qinghai-Tibet plateau. The results showed that the soil respiration of diurnal and seasonal rate changed little in growing season and was mainly affected by temperature, and single peak curve that showed afternoon appeared. Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate. The variation range of <em>Q</em><sub>10</sub> ranged from 1.28 to 2.34, which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period. Meanwhile, during the growing seasons the observed amount of annual carbon fixation via primary production for <em>Kobresia pygmaea</em> meadow ecosystem was about 120.21 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. The carbon dioxide output via soil heterotrophic respiration was about 37.54 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. So carbon budget had more input than output. The <em>Kobresia pygmaea</em> meadow ecosystem has stronger potential to absorb carbon dioxide, it was a sink of atmospheric CO<sub>2</sub>, and the plant community had a net carbon gain of 82.67 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>.
文摘Facing the challenge of climate change, forecasts of energy demand and carbon emissions demand are a key requirement for India to ensure energy security and the balance economic growth. The authors calculate the optimal economic growth under the balance economic growth path from 2009 to 2050 in India based on the economy-carbon dynamic model. Combination of Intergovernmental Panel on Climate Change (IPCC) 2006 edition of the formula of carbon emissions, energy intensity model, and population model, it gets the carbon emissions demand caused by energy consumption for time span 1980-2008. Then, it estimates the energy consumption demand and carbon emissions demand under the balance economic growth path from 2009 to 2050. The results show that the cumulative amount of energy demand and carbon emissions demand in India for the time span 2009 to 2050, are 44.65 Gtoe and 36.16 Gt C, separately. The annual demand of energy consumption and carbon emissions for India show an inverted U curve from 2009 to 2050. The demand of energy consumption and carbon emissions will peak in 2045, and the peak values are 1290.74 Mtoe and 1045.98 Mt C. Furthermore, India’s per capita energy consumption demand and carbon emissions demand also appear maximum values, which are separately 0.81 toe and 0.65 t C.
基金supported by the National Natural Science Foundation of China(No.81001247)
文摘Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adults published up to October 2012 was performed, each study were reviewed, and data were abstracted. The studies were first evaluated for heterogeneity. The average protein requirements were analyzed by using the individual data of each included studies. Study site climate, age, sex, and dietary protein source were compared. Results Data for 348 subjects were gathered from 28 nitrogen balance studies. The natural logarithm of requirement for 348 individuals had a normal distribution with a mean of 4.66. The estimated average requirement was the exponentiation of the mean of the log requirement, 105.64 mg N/kg·d. No significant differences between adult age, source of dietary protein were observed. But there was significant difference between sex and the climate of the study site (P〈0.05). Conclusion The estimated average requirement and recommended nutrient intake of the healthy adult population was 105.64 mg N/kg·d (0.66 g high quality protein/kg·d) and 132.05 mg N/kg·d (0.83 g high quality protein/kg·d), respectively.
文摘To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.