期刊文献+
共找到1,869篇文章
< 1 2 94 >
每页显示 20 50 100
Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature
1
作者 Shenfei Zhao Xiaoshuai Wu +5 位作者 Jiliang Zhang Chunjie Li Zixiang Cui Weihua Hu Ruguang Ma Changming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期325-335,I0008,共12页
Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activat... Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activation energy at the sulfur cathode pose great challenges for the practical applications.Herein,biomass-derived carbon with single-atomic cobalt sites(MMPC-Co)is synthesized as the cathode in Zn-S batteries.The catalysis of single-atom Co sites greatly promotes the transform of cathode electrolyte interface(CEI)on the cathode surface,while offering accelerated charge transfer rate for high conversion reversibility and large electrochemical surface area(ECSA)for high electrocatalytic current.Furthermore,the rich pore structure not only physically limits sulfur loss,but also accelerates the transport of zinc ions.In addition,the large pore volume of MMPC-Co is able to relieve the stress effect caused by the volume expansion of Zn S during charge/discharge cycles,thereby maintaining the stability of electrode structure.Consequently,the sulfur cathode maintains a high specific capacity of 729.96 m A h g^(-1)after 500 cycles at4 A g^(-1),which is much better than most cathode materials reported in the literature.This work provides new insights into the design and development of room-temperature aqueous Zn-S batteries. 展开更多
关键词 Biomass-derived carbon Single-atom catalysts Rich pore structure sulfur cathode Aqueous zinc-sulfur batteries
下载PDF
Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries 被引量:17
2
作者 Qinghuiqiang Xiao Gaoran Li +6 位作者 Minjie Li Ruiping Liu Haibo Li Pengfei Ren Yue Dong Ming Feng Zhongwei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期61-67,共7页
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H... Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance. 展开更多
关键词 Biomass-derived material Porous carbon LITHIUM sulfur BATTERIES Electrochemical performance
下载PDF
Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries 被引量:12
3
作者 Juan Ren Yibei Zhou +3 位作者 Huali Wu Fengyu Xie Chenggang Xu Dunmin Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期121-131,共11页
Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly prec... Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly precursor, is employed to fabricate cauliflower-like in-situ nitrogen, oxygen and phosphorus tri-doped porous biomass carbon(NOPC) by a facile activation with H_3PO_4 and carbonization process.The morphology and microstructure of NOPC can be readily tuned by altering pyrolysis temperature. The as-prepared NOPC matrix material carbonized at 600 °C possesses 3D hierarchical porous structure, high specific surface area(535.352 m^2 g^(-1)), and appropriate pore size and pore size distribution. Encapsulating sulfur into the NOPC depends on a stem-melting technology as cathode materials of Li–S batteries. Due to the synergistic effect of special physical structure and inherent tri-doping of N, O and P, electrons and ions transfer and utilization of active sulfur in the materials are improved, and the shuttle behaviors of soluble lithium polysulfides are also mitigated. Consequently, the S/NOPC-600 composite exhibits excellent electrochemical performance, giving a high initial discharge capacity of 1185 mA h g^(-1) at 0.05 C and maintaining a relatively considerable capacity of 489 m A h g^(-1) at 0.2 C after 300 cycles. Our work shows that a promising candidate for cathode material of Li–S batteries can be synthesized using low-cost and renewable biomass materials by a facile process. 展开更多
关键词 Biomass-derived carbon materials GOAT HAIR Nitrogen Oxygen and phosphorus tri-doping LITHIUM sulfur BATTERIES
下载PDF
Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China 被引量:6
4
作者 WAN Siang LIU Xingtu +1 位作者 MOU Xiaojie ZHAO Yongqiang 《Chinese Geographical Science》 SCIE CSCD 2020年第2期202-216,共15页
The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and tempor... The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China. 展开更多
关键词 coastal WETLAND plant invasion SPARTINA alterniflora SOIL carbon SOIL NITROGEN SOIL sulfur
下载PDF
Grafting polymeric sulfur onto carbon nanotubes as highly-active cathode for lithium–sulfur batteries 被引量:4
5
作者 Junfeng Wu Siyu Ding +1 位作者 Shihai Ye Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期27-33,共7页
Lithium–sulfur(Li–S)batteries are being explored as promising advanced energy storage systems due to their ultra-high energy density.However,fast capacity fading and low coulombic efficiency,resulting from the disso... Lithium–sulfur(Li–S)batteries are being explored as promising advanced energy storage systems due to their ultra-high energy density.However,fast capacity fading and low coulombic efficiency,resulting from the dissolution of polysulfides,remain a serious challenge.Compared to weak physical adsorptions or barriers,chemical confinement based on strong chemical interaction is a more effective approach to address the shuttle issue.Herein,we devise a novel polymeric sulfur/carbon nanotube composite for Li–S battery,for which 2,5-dithiobiurea is chosen as the stabilizer of long-chain sulfur.This offers chemical bonds which bridge the polymeric sulfur and carbon nanotubes.The obtained composite can deliver an ultra-high reversible capacity of 1076.2 m Ahg^-1(based on the entire composite)at the rate of 0.1 C with an exceptional initial Coulombic efficiency of 96.2%,as well as remarkable cycle performance.This performance is mainly attributed to the reaction reversibility of the obtained polymeric sulfur-based composite during the discharge/charge process.This was confirmed by density functional theory calculations for the first time. 展开更多
关键词 Lithium–sulfur BATTERIES POLYMERIC sulfur carbon NANOTUBES DFT calculations High capacity
下载PDF
Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media 被引量:5
6
作者 Yixing Shen Feng Peng +3 位作者 Yonghai Cao Jianliang Zuo Hongjuan Wang Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期33-42,共10页
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using... Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells. 展开更多
关键词 ELECTROCATALYST Biocarbon LIGNIN NITROGEN and sulfur CO-DOPED carbon Oxygen reduction reaction
下载PDF
Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries 被引量:6
7
作者 Xiaofei Liu Qiang Zhang +3 位作者 Jiaqi Huang Shumao Zhang Hongjie Peng Fei Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期341-346,共6页
Carbon nanotubes (CNTs) are excellent scaffolds for advanced electrode materials, resulting from their intrinsic sp2 carbon hybridization, interconnected electron pathway, large aspect ratio, hierarchical porous str... Carbon nanotubes (CNTs) are excellent scaffolds for advanced electrode materials, resulting from their intrinsic sp2 carbon hybridization, interconnected electron pathway, large aspect ratio, hierarchical porous structures, and low cost at a large-scale production. How to make full utilization of the mass produced CNTs as building blocks for nanocomposite electrodes is not well understood yet. Herein, a composite cathode containing commercial agglomerated multi-walled CNTs and S for Li-S battery was fabricated by a facile melt-diffusion strategy. The hierarchical CNT@S coaxial nanocables exhibited a discharging capacity of 1020 and 740 mAh .g-1 at 0.5 and 2.0 C, respectively. A rapid capacity decay of 0.7% per cycle at the initial 10 cycles and a slow decay rate of 0.14% per cycle for the later 140 cycles were detected. Such hierarchical agglomerated CNT@ S cathodes show advantages in easy fabrication, environmentally benign, low cost, excellent scalability, and good Li ion storage performance, which are extraordinary composites for high performance Li-S battery. 展开更多
关键词 carbon nanotubes lithium sulfur battery hierarchical nanocomposite CATHODE energy storage
下载PDF
Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries 被引量:4
8
作者 Juan Zhang Huan Ye +1 位作者 Yaxia Yin Yuguo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期308-314,共7页
Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and... Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and the shuttling of highly dissoluble lithium polysulfides generated during the cycles.Loading sulfur into porous carbons has been proved to be an effective approach to alleviate these issues.Mesoporous and microporous carbons have been widely used for sulfur accommodation,but mesoporous carbons have poor sulfur confinement,whereas microporous carbons are impeded by low sulfur loading rates.Here,a core-shell carbon,combining both the merits of mesoporous carbon with large pore volume and microporous carbon with effective sulfur confinement,was prepared by coating the mesoporous CMK-3 with a microporous carbon(MPC) shell and served as the carbon host(CMK-3 @MPC) to accommodate sulfur.After sulfur infusion,the as-obtained S/(CMK-3@MPC) cathode delivered a high initial capacity of up to 1422 mAh·g-1 and sustained 654 mAh·g-1 reversible specific capacity after 36 cycles at 0.1 C.The good performance is ascribed to the unique core-shell structure of the CMK-3@MPC matrix,in which sulfur can be effectively confined within the meso/microporous carbon host,thus achieving simultaneously high electrochemical utilization. 展开更多
关键词 core-shell structure microporous carbon coating mesoporous carbon lithium-sulfur batteries sulfur cathode
下载PDF
Atomic Layer Deposition-Assisted Construction of Binder-Free Ni@N-Doped Carbon Nanospheres Films as Advanced Host for Sulfur Cathode 被引量:3
9
作者 Jun Liu Aixiang Wei +4 位作者 Guoxiang Pan Qinqin Xiong Fang Chen Shenghui Shen Xinhui Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期147-160,共14页
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Her... Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems. 展开更多
关键词 Atomic layer deposition Nickel N-DOPED carbon NANOSPHERES sulfur CATHODE Lithium-sulfur batteries
下载PDF
Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode 被引量:3
10
作者 Xin Zhuang Yingjia Liu +2 位作者 Jian Chen Hao Chen Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期391-396,共6页
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon ... Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1The improved capacity retention was obtained during the cell cycling as well. 展开更多
关键词 lithium-sulfur battery sulfur/carbon composite ordered porous carbon bimodal micro/meso-porous carbon tri-block copolymer
下载PDF
Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries 被引量:11
11
作者 Yinyu Xiang Liqiang Lu +1 位作者 Ajay Giri Prakash Kottapalli Yutao Pei 《Carbon Energy》 SCIE CAS 2022年第3期346-398,共53页
Lithium-sulfur(Li-S)batteries,although a promising candidate of next-generation energy storage devices,are hindered by some bottlenecks in their roadmap toward commercialization.The key challenges include solving the ... Lithium-sulfur(Li-S)batteries,although a promising candidate of next-generation energy storage devices,are hindered by some bottlenecks in their roadmap toward commercialization.The key challenges include solving the issues such as low utilization of active materials,poor cyclic stability,poor rate performance,and unsatisfactory Coulombic efficiency due to the inherent poor electrical and ionic conductivity of sulfur and its discharged products(e.g.,Li2S2 and Li_(2)S),dissolution and migration of polysulfide ions in the electrolyte,unstable solid electrolyte interphase and dendritic growth on an odes,and volume change in both cathodes and anodes.Owing to the high specific surface area,pore volume,low density,good chemical stability,and particularly multimodal pore sizes,hierarchical porous carbon(HPC)mate rials have received considerable attention for circumventing the above pro blems in Li-S batteries.Herein,recent progress made in the synthetic methods and deployment of HPC materials for various components including sulfur cathodes,separators and interlayers,and lithium anodes in Li-S batteries is presented and summarized.More importantly,the correlation between the structures(pore volume,specific surface area,degree of pores,and heteroatom-doping)of HPC and the electrochemical performances of Li-S batteries is elaborated.Finally,a discussion on the challenges and future perspectives associated with HPCs for Li-S batteries is provided. 展开更多
关键词 carbon/sulfur cathodes hierarchical porous carbon lithium-sulfur batteries lithium metal anodes separators/interlayers synthetic methods
下载PDF
Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries 被引量:4
12
作者 Limin Zhang Wenqing Zhao +6 位作者 Shaohui Yuan Feng Jiang Xingqi Chen Yue Yang Peng Ge Wei Sun Xiaobo Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期531-545,共15页
Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores w... Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization. 展开更多
关键词 Oxygen-doped carbon sulfur immobilization Mesoporous carbon Lithium sulfur battery In-situ kinetic analysis
下载PDF
Carbon-based flexible self-supporting cathode for lithium-sulfur batteries:Progress and perspective 被引量:11
13
作者 Qinghuiqiang Xiao Jinlin Yang +7 位作者 Xiaodong Wang Yirui Deng Peng Han Ning Yuan Lei Zhang Ming Feng Chang‐an Wang Ruiping Liu 《Carbon Energy》 CAS 2021年第2期271-302,共32页
The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as... The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB. 展开更多
关键词 carbon FLEXIBLE lithium sulfur batteries SELF-SUPPORTING
下载PDF
Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries 被引量:9
14
作者 Meng Zhao Yan-Qi Peng +2 位作者 Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期203-208,共6页
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu... Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries High sulfur content High areal loading Double-layer carbon High energy density
下载PDF
Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries 被引量:3
15
作者 Han Zhang Zongbin Zhao +5 位作者 Yang Liu Jingjing Liang Yanan Hou Zhichao Zhang Xuzhen Wang Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1282-1290,共9页
Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen dop... Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen doped hierarchical 3 D porous carbons(NHPC) were prepared via a novel metal–organic aerogel(MOA), using hexamethylenetetramine(HMT), 1,3,5-benzenetricarboxylic acid and copper(II) as starting materials. The morphology, porous structure of the building blocks in the NHPC can be tuned readily using different amount of HMT, which makes elongation of the pristine octahedron of HKUST-1 to give rise to different aspect ratio rod-like structures. The as-prepared NHPC with rod-like carbons exhibit high performance in lithium sulfur battery due to the rational ion transfer pathways, high N-doped doping and hierarchical porous structures. As a result, the initial specific capacity of 1341 m A h/g at rate of 0.5 C(1 C = 1675 m A h/g) and high-rate capability of 354 m A h/g at 5 C was achieved. The decay over 500 cycles is 0.08% per cycle at 1 C, highlighting the long-cycle Li–S batteries. 展开更多
关键词 Metal–organic aerogel N-doped porous carbon Lithium–sulfur batteries
下载PDF
Hierarchically porous, ultrathin N–doped carbon nanosheets embedded with highly dispersed cobalt nanoparticles as efficient sulfur host for stable lithium–sulfur batteries 被引量:3
16
作者 Mengrui Wang Xunfu Zhou +3 位作者 Xin Cai Hongqiang Wang Yueping Fang Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期106-114,共9页
The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of hig... The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of high–efficiency sulfur host is increasingly demanded to accelerate the polysulfides conversion during charge/discharge process. Herein, we propose a macro–mesoporous sulfur host(Co@NC), which comprises highly dispersed cobalt nanoparticles embedding in N–doped ultrathin carbon nanosheets. Co@NC is simply synthesized via a carbon nitride–derived pyrolysis approach. Owing to the highly conductive graphene–like matrix and well defined porous structure, the designed multifunctional Co@NC host enables rapid electron/ion transport, electrolyte penetration and effective sulfur trapping. More significantly,N heteroatoms and homogeneous Co nanocatalysts in the graphitic carbon nanosheets could serve as chemisorption sites as well as electrocatalytic centers for sulfur species. These Co–N active sites can synergistically facilitate the redox conversion kinetics and mitigate the shuttling of polysulfides, thus leading to improved electrochemical cycling performance of Li–S batteries. As a consequence, the S/Co@NC cathode demonstrates high initial specific capacity(1505 mA h g-1 at 0.1 C) and excellent cycling stability at 1 C over 300 cycles, giving rise to a capacity retention of 91.7% and an average capacity decline of 0.03%cycle-1. 展开更多
关键词 Rechargeable lithium–sulfur batteries sulfur host Shuttling effect carbon nanosheets Cobalt nanoparticles carbon nitride
下载PDF
Coupled carbon and sulfur isotope behaviors and other geochemical perspectives into marine methane seepage 被引量:2
17
作者 LIU Lihua FU Shaoying +2 位作者 ZHANG Mei GUAN Hongxiang WU Nengyou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第6期12-22,共11页
Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life whic... Methane seepage is the signal of the deep hydrocarbon reservoir. The determination of seepage is significant to the exploration of petroleum, gas and gas hydrate. The seepage habits microbial and macrofaunal life which is fueled by the hydrocarbons, the metabolic byproducts facilitate the precipitation of authigenic minerals. The study of methane seepage is also important to understand the oceanographic condition and local ecosystem. The seepage could be active or quiescent at different times. The geophysical surveys and the geochemical determinations reveal the existence of seepage. Among these methods, only geochemical determination could expose message of the dormant seepages. The active seepage demonstrates high porewater methane concentration with rapid SO42- depleted, low HaS and dissolved inorganic carbon (DIC), higher rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM). The quiescent seepage typically develops authigenic carbonates with specific biomarkers, with extremely depleted 13C in gas, DIC and carbonates and with enriched 34S sulfate and depleted 34S pyrite. The origin of methane, minerals precipitation, the scenario of seepage and the possible method of immigration could be determined by the integration of solutes concentration, mineral composition and isotopic fractionation of carbon, sulfur. Numerical models with the integrated results provide useful insight into the nature and intensity of methane seepage occurring in the sediment and paleo- oceanographic conditions. Unfortunately, the intensive investigation of a specific area with dormant seep is still limit. Most seepage and modeling studies are site-specific and little attempt has been made to extrapolate the results to larger scales. Further research is thus needed to foster our understanding of the methane seepage. 展开更多
关键词 marine seepage authigenic minerals carbon isotopes sulfur isotopes numerical simulation
下载PDF
High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage 被引量:4
18
作者 Xiaoyan Chen Xin-Bing Cheng Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期688-698,共11页
Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity a... Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity and structural instability still hinder their practical application. Herein, high sulfur-doped hard carbon(SHC-3) with a sulfur up to 27.05 at% is synthesized from polystyrene and sulfur as precursors. As an anode for PIBs, the SHC-3 delivers a superb cycling stability and rate performance(298.1 mAh g^(-1)at 100 mA g^(-1) for 1000 cycles, a capacity retention of 95.2%;220.2 mAh g^(-1)at 500 mA g^(-1) after 5200 cycles). The potassium storage of SHC-3 exhibits excellent cyclic stability at both low and high rates.Structure and kinetic studies demonstrate that the larger interlayer spacing(0.382 nm) of the SHC-3 accelerates the diffusion of potassium ions and effectively alleviates the volume expansion, and thus maintains the structure stability during the process of potassization/de-potassization. Meanwhile, the density functional theory calculation shows that the doped sulfur atoms provide abundant active sites for the adsorption of potassium ions, thereby increasing the reversible capacity of PIBs. This work provides a new scheme for the design of carbonaceous anode materials with high capacity and long cycle life. 展开更多
关键词 Hard carbon materials sulfur doping ANODE Potassium-ion storage DFT calculation
下载PDF
Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode 被引量:5
19
作者 Ji In Jung Sunwoo Park +3 位作者 Son Ha Se Youn Cho Hyoung-Joon Jin Young Soo Yun 《Carbon Energy》 CAS 2021年第5期784-794,共11页
Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a k... Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a key factor to achieve their high electrochemical performance.Here,the effects of nanopores and sulfur doping on carbon-based nanoporous host(CNH)electrode materials for LMAs were investigated using natural polymer-derived CNHs.Homogeneous pore-filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis,where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency(CE)of~99.4%and stable 600 cycles.In addition,a comparison study of CNH and sulfurdoped CNH(S-CNH)electrodes,which differ only in the presence or absence of sulfur,revealed that sulfur doping can cause lower electrochemical series resistance,higher CE value,and better cycling stability in a wide range of current densities and number of cycles.Moreover,S-CNH-based LMAs showed high electrochemical performance in full-cell Li-S battery tests using a sulfur copolymer cathode,where a high energy density of 1370Wh kgelectrode−1 and an excellent power density of 4120Wkgelectrode−1 were obtained. 展开更多
关键词 carbon template Li-S batteries lithium metal anode lithium metal batteries nanoporous carbon sulfur doping
下载PDF
Biomass-derived porous carbon materials for advanced lithium sulfur batteries 被引量:15
20
作者 Poting Liu Yunyi Wang Jiehua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期171-185,共15页
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ... Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries. 展开更多
关键词 Biomass-derived carbon materials Lithium-sulfur battery Porous carbon Carbohydrate Cellulose
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部