期刊文献+
共找到55,625篇文章
< 1 2 250 >
每页显示 20 50 100
Structure and denitration performance of carbon-based catalysts prepared from Cu-BTC precursor 被引量:8
1
作者 Li ZHANG Lei HUANG +1 位作者 Yi-hong QIN Bai-zhen CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期980-988,共9页
Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman s... Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role. 展开更多
关键词 metal organic frameworks Cu-BTC precusor carbon-based catalyst low-temperature denitzaion CO
下载PDF
Electrosynthesis of H_(2)O_(2)via two-electron oxygen reduction over carbon-based catalysts:From microenvironment control to electrode/reactor design
2
作者 Jingjing Jia Zhenxin Li +4 位作者 Yunrui Tian Xia Li Rui Chen Jiachen Liu Ji Liang 《Energy Reviews》 2024年第2期117-135,共19页
The electrochemical production of hydrogen peroxide(H_(2)O_(2))by the two-electron oxygen reduction(2e^(-)-ORR)process has the advantages of high safety,low energy consumption,and environmental friendliness.For 2e^(-)... The electrochemical production of hydrogen peroxide(H_(2)O_(2))by the two-electron oxygen reduction(2e^(-)-ORR)process has the advantages of high safety,low energy consumption,and environmental friendliness.For 2e^(-)-ORR,the catalyst/electrode is the key component as it strongly affects catalytic performance and cost.Carbon materials have the advantages of high electronic conductivity,good structural stability,easy control of nanostructures,and low cost.Therefore,it has been regarded as a promising catalyst/electrode material for the electrosynthesis of H_(2)O_(2)via 2e^(-)-ORR.In addition,studies have also considered the optimization of the liquid/gas interface by tuning the electrode surface,electrolyte pH,and reactor configurations for further improving the activity and selectivity of catalysts.In this review,we provide an in-depth discussion of the recent research on the carbon-based electrocatalysts for 2e^(-)ORR,especially in terms of microenvironment tuning,catalyst/electrode interface engineering,and reactor design for achieving stable and efficient production of H_(2)O_(2).The challenges that we are still facing and the future development prospects will then be concluded,which we believe should help the future development in this field. 展开更多
关键词 Oxygen reduction Hydrogen peroxide carbon-based catalyst Electrode surface Reactor design
原文传递
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
3
作者 Shuqi Li Xincheng Lu +8 位作者 Shuling Liu Jingjing Zhou Yanyan Liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang Baojun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 Carbon materials Coordination chemistry Defective structure Energy catalysis Single atom catalysts
下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting
4
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
5
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
6
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
下载PDF
Metal-free, carbon-based catalysts for oxygen reduction reactions 被引量:6
7
作者 Zhiyi Wu Zafar Iqbal Xianqin Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第3期280-294,共15页
Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon ... Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C-M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorpora- tion of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts. 展开更多
关键词 oxygen reduction reaction ELECTROCATALYSIS metal-flee carbon-based polynitrogen
原文传递
Reaction Kinetics of Biodiesel Synthesis from Waste Oil Using a Carbon-based Solid Acid Catalyst 被引量:9
8
作者 舒庆 高继贤 +1 位作者 廖玉会 王金福 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期163-168,共6页
The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and... The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values. 展开更多
关键词 BIODIESEL carbon-based solid acid catalyst heterogeneous catalysis simultaneous transesterification and esterification reaction KINETICS
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:8
9
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:4
10
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation 被引量:1
11
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts Bimetallic catalysts Biomass valorization Electrocatalyst synthesis
下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
12
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
下载PDF
Series Reports from Professor Wei's Group of Chongqing University:Advancements in Electrochemical Energy Conversions(1/4):Report 1:High-performance Oxygen Reduction Catalysts for Fuel Cells
13
作者 Fa-Dong Chen Zhuo-Yang Xie +5 位作者 Meng-Ting Li Si-Guo Chen Wei Ding Li Li Jing Li Zi-Dong Wei 《电化学(中英文)》 CAS 北大核心 2024年第7期1-27,共27页
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo... Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction Pt-based catalyst carbon-based catalyst
下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries 被引量:1
14
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction Single atom catalyst Shell coordination optimization
下载PDF
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates 被引量:1
15
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
Boosting Fischer-Tropsch Synthesis via Tuning of N Dopants in TiO_(2)@CN-Supported Ru Catalysts 被引量:1
16
作者 Xincheng Li Yunhao Liu +10 位作者 Dejian Zhao Shuaishuai Lyu Jingwei Ye Xiaoshen Li Peipei Wu Ye Tian Yingtian Zhang Tong Ding Song Song Qingpeng Cheng Xingang Li 《Transactions of Tianjin University》 EI CAS 2024年第1期90-102,共13页
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ... Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%. 展开更多
关键词 Fischer-Tropsch synthesis N-doped carbon materials Ruthenium catalyst Pyridinic N Metal-N interaction
下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
17
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants Heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
下载PDF
High-rate electrochemical H_(2)O_(2) production over multimetallic atom catalysts under acidic–neutral conditions 被引量:1
18
作者 Yueyu Tong Jiaxin Liu +5 位作者 Bing-Jian Su Jenh-Yih Juang Feng Hou Lichang Yin Shi Xue Dou Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期44-62,共19页
Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show... Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes. 展开更多
关键词 hydrogen peroxide production multiatom catalysts operando X-ray adsorption spectrum reaction mechanism tendency structure-property relation
下载PDF
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
19
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization 被引量:2
20
作者 Yizhe Li Yajie Li +7 位作者 Hao Sun Liyao Gao Xiangrong Jin Yaping Li Zhi LV Lijun Xu Wen Liu Xiaoming Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期402-440,共39页
The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-perf... The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section. 展开更多
关键词 Dual-atom catalysts Synergetic effect ELECTROCATALYSIS Oxygen reduction reaction CO_(2)reduction reaction Hydrogen evolution reaction N2 reduction reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部