The influence of reduction temperature, size of coal powder and the carbon content on the evaporation rates of Zn and Pb in pellets made of ZnO-PbO-FeO bearing dust has been investigated between 1100-1300℃. The evapo...The influence of reduction temperature, size of coal powder and the carbon content on the evaporation rates of Zn and Pb in pellets made of ZnO-PbO-FeO bearing dust has been investigated between 1100-1300℃. The evaporation rate of Zn and Pb obtained from the experiments has been analyzed with kinetic models. The results show that the control step for evaporation of Zn is reduction reaction of ZnO by CO at the interface,and that the evaporation rate of Pb is controlled by the volatilization of reduction products, i.e. liquid lead. The overall apparent activation energies of Zn and Pb evaporation from the pellet are 79.42kJ/mol and 88.74kJ/mol respectively.展开更多
When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each oth...When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.展开更多
Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carb...Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke frees, are not used extensively in the metallurgical industry because of operational difficu]ties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sin- tering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.展开更多
The use of low-grade,refractory and composite paragenetic mineral resources is necessary for overcoming the shortage of iron ore resources in China.As a solution to the treatment of such iron ores,the direct reduction...The use of low-grade,refractory and composite paragenetic mineral resources is necessary for overcoming the shortage of iron ore resources in China.As a solution to the treatment of such iron ores,the direct reduction of carbon-bearing pellets can ensure complete iron removal and the effective enrichment of other high-value elements.Thus,this technology enjoys a broad application prospect.However,there are several problems with low-temperature reduction,such as low iron ore reaction efficiency,long reaction time,and high energy consumption.To improve the low-temperature carbothermic reduction efficiency of iron ores,a static magnetic field with magnetic induction intensity of 1.0 T was introduced.An isothermal reduction experiment was conducted at 1223 K to study the low-temperature self-reduction characteristics of carbon-bearing pellets of Bayan Obo lean iron ores in the static magnetic field.Also,the acting mechanism of the magnetic field was explored from the perspective of the reduction process,reaction efficiency,phase composition,microstructure changes,and dynamic behavior of iron ores.The results showed that the magnetic field can increase the low-temperature reduction rate of carbon-bearing pellets of Bayan Obo lean iron ores.Under the conditions of reduction temperature of 1223 K,magnetic induction intensity of 1.0 T,and reduction time of 60 min,the reduction degree was 92.42%,1.65 times that without a magnetic field.The magnetic field promoted the replacement of Ca^(2+)and Fe^(2+),so that the hard-to-reduce iron-bearing silicates were reduced in the order of Fe2SiO_(4)→(Ca,Na)FeSiO_(4)→FeO→Fe.The magnetic field enabled loose minerals,more pores and cracks,and changes in the growth morphology and distribution position of metallic iron.Compared with the case under the non-magnetic condition,the metallic iron precipitated from the slag phase in a foliated shape,separated from the matrix iron oxides,and grew up at the junction of the slag phase and coke.The magnetic field significantly increased the interfacial chemical reaction rate of the carbothermic reduction of iron ores and reduced the internal diffusion resistance of gas in the product layer.Specifically,the interfacial chemical reaction rate increased by 138%and the internal diffusion coefficient increased by 309%.Therefore,the effect of the magnetic field on the internal diffusion resistance was the main cause for strengthening the low-temperature reduction of iron ores.展开更多
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future....High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.展开更多
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle...Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.展开更多
Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellet...Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.展开更多
The oxidation behavior of artificial magnetite pellets was investigated through measurements of the oxidation degree and mineralogical analysis. The results show that artificial magnetite pellets are much easier to ox...The oxidation behavior of artificial magnetite pellets was investigated through measurements of the oxidation degree and mineralogical analysis. The results show that artificial magnetite pellets are much easier to oxidize than natural magnetite. The oxidation is controlled through two different reaction mechanisms. The oxidation of artificial magnetite is dominated by internal diffusion, with an activation energy of 8.40 kJ/mol, at temperatures less than 800°C, whereas it is controlled by chemical reaction, with a reaction activation energy of 67.79 kJ/mol, at temperatures greater than 800°C. In addition, factors such as the oxygen volume fraction and the pellet diameter strongly influence the oxidation of artificial magnetite: a larger oxygen volume fraction and a smaller pellet diameter result in a much faster oxidation process.展开更多
Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon compo...Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.展开更多
The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of t...The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology.展开更多
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account...A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.展开更多
Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets(HVTMP)prepared by gas-based direct reduction were investigated,and the effects of smelting parameters on the slag/metal separation b...Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets(HVTMP)prepared by gas-based direct reduction were investigated,and the effects of smelting parameters on the slag/metal separation behaviors were analyzed.Relevant mechanisms were elucidated using X-ray diffraction analysis,FACTSAGE 7.0 calculations,and scanning electron microscopy observations.The results show that,when the smelting temperature,time,and C/O ratio are increased,the recoveries of V and Cr of HVTMP in pig iron are improved,the recovery of Fe initially increases and subsequently decreases,and the recovery of Ti O_2 in slag decreases.When the smelting Ca O/Si O_2 ratio is increased,the recoveries of Fe,V,and Cr in pig iron increase and the recovery of Ti O_2 in slag initially increases and subsequently decreases.The appropriate smelting separation parameters for HVTMP are as follows:smelting temperature of 1873 K;smelting time of 30–50 min;C/O ratio of 1.25;and Ca O/Si O_2 ratio of 0.50.With these optimized parameters(smelting time:30 min),the recoveries of Fe,V,Cr,and Ti O_2 are 99.5%,91.24%,92.41%,and 94.86%,respectively.展开更多
Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-soli...The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF.展开更多
The study on the beneficiation of titanium oxides from Panzhihua ilmenites by reduction of coal bearing pellets was carried out. The iron oxides in pellets were efficiently reduced to metal iron, and titanium oxide sl...The study on the beneficiation of titanium oxides from Panzhihua ilmenites by reduction of coal bearing pellets was carried out. The iron oxides in pellets were efficiently reduced to metal iron, and titanium oxide slag beneficiated was separated from metal iron. The effect of temperature, flux and coal blending ratio on the reduction and separation was investigated, and rational parameters were determined. A new process for the beneficiation of titanium oxides by rotary hearth furnace (RHF) was proposed.展开更多
Berberine chloride(BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy,which is closely related to the discovery of BBR intestinal target.The major aim of this paper is to...Berberine chloride(BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy,which is closely related to the discovery of BBR intestinal target.The major aim of this paper is to develop BBR intestinal retention type sustained-release pellets and evaluate their in vivo and in vitro behaviors base on the aspect of local action on intestinal tract. Here,wet milling technology is used to improve dissolution and dissolution rate of BBR by decreasing the particle size and increasing the wettability. The pellets are prepared by liquid layer deposition technology,and then the core pellets are coated with Eudragit~?L30 D-55 and Eudragit~?NE30 D aqueous dispersion. The prepared pellets show high drug loading capacity,and the drug loading up to 93%. Meanwhile,it possesses significant sustained drug release effect in purified water which is expected to improve the pharmacokinetic behavior of BBR. The pharmacokinetics results demonstrate that the halflife of BBR was increased significantly from 24 h to 36 h and the inter-and intra-subject variability are decreased compared to commercial BBR tablets. The retention test results indicate that the pellet size and Eudragit~?NE30 D plays an important role in retention time of the pellet,and it is found that the pellets with small particle size and high Eudragit~?NE30 D coating content can stay longer in the intestine than the pellets with large particle size. All in all,BBR intestinal retention type pellets are prepared successfully in this study,and the pellets show satisfactory in vivo and in vitro behaviors.展开更多
The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO af...The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO affects the strength of the pellets. Experimental resuits show that when the MgO-bearing flux content in the pellets increases from 0.0wt% to 2.0wt%, the compressive strength of the pellets at ambient temperature decreases, but the compressive strength of the pellets after reduction increases. Therefore, the compressive strength of the pellets after reduction exhibits no certain positive correlation with that before reduction. The porosity and pore size of all the pellets (with different MgO contents) increase when the pellets are reduced. However, the increase in porosity of the MgO-fluxed pellets is relatively smaller than that of the traditional non-MgO-fluxed pellets, and the pore size range of the MgO-fluxed pellets is relatively narrower. The reduction swelling index (RSI) is a key factor for governing the compressive strength of the reduced pellets. An approximately reversed linear relation can be concluded that the lower the RSI, the greater the compressive strength of the reduced pellets is.展开更多
The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additiv...The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.展开更多
Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To allevi...Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To alleviate these problems, fluxed lime iron oxide pellets (FLIP) containing 30% CaO were developed in this study using waste iron oxide fines and lime. The suitable handling strengths of the pellet (crushing strength: 300 N; drop strength: 130 times) of FLIP were developed by treating with CO2 or industrial waste gas at room temperature, while no separate binders were used. When the pellet was added into hot metal bath (carbon-containing molten iron), it was decomposed, melted, and transformed to produce low melting oxidizing slag, because it is a combination of main CaO and Fe2O3. This slag is suitable for facilitating P and C removal in refining. Furthermore, the pellet enhances waste utilization and use of CO2 in waste gas. In this article, emphasis is given on studying the behavior of these pellets in hot metal bath during melting and refining along with thermodynamics and kinetics analysis. The observed behaviors of the pellet in hot metal bath confirm that it is suitable and beneficial for use in BOF and replaces lump lime.展开更多
文摘The influence of reduction temperature, size of coal powder and the carbon content on the evaporation rates of Zn and Pb in pellets made of ZnO-PbO-FeO bearing dust has been investigated between 1100-1300℃. The evaporation rate of Zn and Pb obtained from the experiments has been analyzed with kinetic models. The results show that the control step for evaporation of Zn is reduction reaction of ZnO by CO at the interface,and that the evaporation rate of Pb is controlled by the volatilization of reduction products, i.e. liquid lead. The overall apparent activation energies of Zn and Pb evaporation from the pellet are 79.42kJ/mol and 88.74kJ/mol respectively.
基金Item Sponsored by National Science and Technology Support Program for 12th Five-year Plan of China(2013BAE07B03)
文摘When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.
基金financially supported by the Ministry of Steel,Government of India
文摘Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke frees, are not used extensively in the metallurgical industry because of operational difficu]ties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sin- tering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.
基金The authors are grateful for the financial support from the Natural Science Foundation of Inner Mongolia(2019MS05010)the National Natural Science Foundation of China(51464039 and 52064044).
文摘The use of low-grade,refractory and composite paragenetic mineral resources is necessary for overcoming the shortage of iron ore resources in China.As a solution to the treatment of such iron ores,the direct reduction of carbon-bearing pellets can ensure complete iron removal and the effective enrichment of other high-value elements.Thus,this technology enjoys a broad application prospect.However,there are several problems with low-temperature reduction,such as low iron ore reaction efficiency,long reaction time,and high energy consumption.To improve the low-temperature carbothermic reduction efficiency of iron ores,a static magnetic field with magnetic induction intensity of 1.0 T was introduced.An isothermal reduction experiment was conducted at 1223 K to study the low-temperature self-reduction characteristics of carbon-bearing pellets of Bayan Obo lean iron ores in the static magnetic field.Also,the acting mechanism of the magnetic field was explored from the perspective of the reduction process,reaction efficiency,phase composition,microstructure changes,and dynamic behavior of iron ores.The results showed that the magnetic field can increase the low-temperature reduction rate of carbon-bearing pellets of Bayan Obo lean iron ores.Under the conditions of reduction temperature of 1223 K,magnetic induction intensity of 1.0 T,and reduction time of 60 min,the reduction degree was 92.42%,1.65 times that without a magnetic field.The magnetic field promoted the replacement of Ca^(2+)and Fe^(2+),so that the hard-to-reduce iron-bearing silicates were reduced in the order of Fe2SiO_(4)→(Ca,Na)FeSiO_(4)→FeO→Fe.The magnetic field enabled loose minerals,more pores and cracks,and changes in the growth morphology and distribution position of metallic iron.Compared with the case under the non-magnetic condition,the metallic iron precipitated from the slag phase in a foliated shape,separated from the matrix iron oxides,and grew up at the junction of the slag phase and coke.The magnetic field significantly increased the interfacial chemical reaction rate of the carbothermic reduction of iron ores and reduced the internal diffusion resistance of gas in the product layer.Specifically,the interfacial chemical reaction rate increased by 138%and the internal diffusion coefficient increased by 309%.Therefore,the effect of the magnetic field on the internal diffusion resistance was the main cause for strengthening the low-temperature reduction of iron ores.
基金supported by the National Natural Science Foundation of China (Nos.52174277 and 52204309)the China Postdoctoral Science Foundation (No.2022M720683).
文摘High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.
基金the National Natural Science Foundation of China(No.51904063)the Science and Technology Plan Project of Liaoning Province,China(No.2022JH24/10200027)+1 种基金the Key Research and Development Project of Hebei Province,China(No.21314001D)the seventh batch of the Ten Thousand Talents Plan(No.ZX20220553).
文摘Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.
基金The Key Project of the 9th Five year Plan of Ministry of Science andTechnology!(No .960 40 2 0 2A)the Foundation for Unive
文摘Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.
基金financially supported by the National Natural Science Foundation of China (No. 51474161)
文摘The oxidation behavior of artificial magnetite pellets was investigated through measurements of the oxidation degree and mineralogical analysis. The results show that artificial magnetite pellets are much easier to oxidize than natural magnetite. The oxidation is controlled through two different reaction mechanisms. The oxidation of artificial magnetite is dominated by internal diffusion, with an activation energy of 8.40 kJ/mol, at temperatures less than 800°C, whereas it is controlled by chemical reaction, with a reaction activation energy of 67.79 kJ/mol, at temperatures greater than 800°C. In addition, factors such as the oxygen volume fraction and the pellet diameter strongly influence the oxidation of artificial magnetite: a larger oxygen volume fraction and a smaller pellet diameter result in a much faster oxidation process.
基金support by the National Natural Science Foundation of China(No.51274033)
文摘Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.
基金financially supported by the National Natural Science Foundation of China (Nos.51674084, 51174051, and 51574082)
文摘The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology.
基金financially supported by the National Key Basic Research and Development Program of China(No. 2012CB720405)
文摘A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
基金financially supported by the National Natural Science Foundation of China (No.51574067)
文摘Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets(HVTMP)prepared by gas-based direct reduction were investigated,and the effects of smelting parameters on the slag/metal separation behaviors were analyzed.Relevant mechanisms were elucidated using X-ray diffraction analysis,FACTSAGE 7.0 calculations,and scanning electron microscopy observations.The results show that,when the smelting temperature,time,and C/O ratio are increased,the recoveries of V and Cr of HVTMP in pig iron are improved,the recovery of Fe initially increases and subsequently decreases,and the recovery of Ti O_2 in slag decreases.When the smelting Ca O/Si O_2 ratio is increased,the recoveries of Fe,V,and Cr in pig iron increase and the recovery of Ti O_2 in slag initially increases and subsequently decreases.The appropriate smelting separation parameters for HVTMP are as follows:smelting temperature of 1873 K;smelting time of 30–50 min;C/O ratio of 1.25;and Ca O/Si O_2 ratio of 0.50.With these optimized parameters(smelting time:30 min),the recoveries of Fe,V,Cr,and Ti O_2 are 99.5%,91.24%,92.41%,and 94.86%,respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金financially supported by the Natural Science Foundation of China(Nos.51374061 and 51074040)
文摘The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF.
文摘The study on the beneficiation of titanium oxides from Panzhihua ilmenites by reduction of coal bearing pellets was carried out. The iron oxides in pellets were efficiently reduced to metal iron, and titanium oxide slag beneficiated was separated from metal iron. The effect of temperature, flux and coal blending ratio on the reduction and separation was investigated, and rational parameters were determined. A new process for the beneficiation of titanium oxides by rotary hearth furnace (RHF) was proposed.
文摘Berberine chloride(BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy,which is closely related to the discovery of BBR intestinal target.The major aim of this paper is to develop BBR intestinal retention type sustained-release pellets and evaluate their in vivo and in vitro behaviors base on the aspect of local action on intestinal tract. Here,wet milling technology is used to improve dissolution and dissolution rate of BBR by decreasing the particle size and increasing the wettability. The pellets are prepared by liquid layer deposition technology,and then the core pellets are coated with Eudragit~?L30 D-55 and Eudragit~?NE30 D aqueous dispersion. The prepared pellets show high drug loading capacity,and the drug loading up to 93%. Meanwhile,it possesses significant sustained drug release effect in purified water which is expected to improve the pharmacokinetic behavior of BBR. The pharmacokinetics results demonstrate that the halflife of BBR was increased significantly from 24 h to 36 h and the inter-and intra-subject variability are decreased compared to commercial BBR tablets. The retention test results indicate that the pellet size and Eudragit~?NE30 D plays an important role in retention time of the pellet,and it is found that the pellets with small particle size and high Eudragit~?NE30 D coating content can stay longer in the intestine than the pellets with large particle size. All in all,BBR intestinal retention type pellets are prepared successfully in this study,and the pellets show satisfactory in vivo and in vitro behaviors.
基金financially supported by the National Natural Science Foundation of China(Nos.51374061 and 51074040)
文摘The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO affects the strength of the pellets. Experimental resuits show that when the MgO-bearing flux content in the pellets increases from 0.0wt% to 2.0wt%, the compressive strength of the pellets at ambient temperature decreases, but the compressive strength of the pellets after reduction increases. Therefore, the compressive strength of the pellets after reduction exhibits no certain positive correlation with that before reduction. The porosity and pore size of all the pellets (with different MgO contents) increase when the pellets are reduced. However, the increase in porosity of the MgO-fluxed pellets is relatively smaller than that of the traditional non-MgO-fluxed pellets, and the pore size range of the MgO-fluxed pellets is relatively narrower. The reduction swelling index (RSI) is a key factor for governing the compressive strength of the reduced pellets. An approximately reversed linear relation can be concluded that the lower the RSI, the greater the compressive strength of the reduced pellets is.
基金the National Natural Science Foundation of China, Contract No. 59774022.]
文摘The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.
基金financial assistance received from the Department of Science and Technology (Government of India) for carrying out this investigation
文摘Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To alleviate these problems, fluxed lime iron oxide pellets (FLIP) containing 30% CaO were developed in this study using waste iron oxide fines and lime. The suitable handling strengths of the pellet (crushing strength: 300 N; drop strength: 130 times) of FLIP were developed by treating with CO2 or industrial waste gas at room temperature, while no separate binders were used. When the pellet was added into hot metal bath (carbon-containing molten iron), it was decomposed, melted, and transformed to produce low melting oxidizing slag, because it is a combination of main CaO and Fe2O3. This slag is suitable for facilitating P and C removal in refining. Furthermore, the pellet enhances waste utilization and use of CO2 in waste gas. In this article, emphasis is given on studying the behavior of these pellets in hot metal bath during melting and refining along with thermodynamics and kinetics analysis. The observed behaviors of the pellet in hot metal bath confirm that it is suitable and beneficial for use in BOF and replaces lump lime.