In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stres...In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress, and peeling stress, taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure.展开更多
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ...The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.展开更多
To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, ...To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.展开更多
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove...Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.展开更多
Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this stud...Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.展开更多
Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capaci...Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.展开更多
Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentati...Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentation behavior with a large external forces exerted,a freeze-bond model based on the dilated polyhedral discrete element method(DEM)is proposed.Herein,imaginary bonding is initialized at the contact points to transmit forces and moments,and the initiation of the damage is detected using the hybrid fracture model.The model is validated through the qualitative agreement between the simulation results and the analytical solution of two bonding particles.To study the effect of freeze-bond on the floating ice rubble,punch-through tests were simulated on the ice rubble under freezing and nonfreezing conditions.The deformation and resistance of the ice rubble are investigated during indenter penetration.The influence of the internal friction coefficient on the strength of the ice rubble is determined.The results indicate that the proposed model can properly describe the consolidated ice rubble,and the freeze-bond effect is of great significance to the ice rubble properties.展开更多
In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have disc...In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.展开更多
A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical prop...A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical properties of silicone adhesive and the vacuum suction cup were experimentally analyzed. Based on the constitutive relationship of four parts in the bonding process, the dynamic bonding process was modeled systematically, and numerically simulated by a commercial finite element analysis code, Adina. The final bonding edge-alignment error and the thickness and uniformity of the adhesive layer were obtained from simulation and validated by experiments. A simulation platform was created for predicting the final bonding quality via adjusting bonding parameters when dimensions of the solar cells and adhesive were changed.展开更多
The 1.3-dipolar cycloaddition reaction of 2-trifluoromethyl- oxazolone and the activated carbon-carbon multiple bond was studied and gave a convenient way to synthesize 2-trifluoromethylpyrrole derivatives.
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon...Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.展开更多
In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation ...In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.展开更多
Resistance spot welding and hybrid weld bonding have wide applications in the body work construction within the automobile industry. The integrity of the spot welds and applied adhesives determines the body assembly r...Resistance spot welding and hybrid weld bonding have wide applications in the body work construction within the automobile industry. The integrity of the spot welds and applied adhesives determines the body assembly rigidity and dynamic performance. Incorporating contact nonlinearity and geometric nonlinearity, finite element analysis (FEA) have been carried out to investigate the structural stiffness and strength of both spot-welded and weld-bonded assemblies. Topology optimization has been performed to reveal the distributions of material effectiveness in the overlap regions and suggest a feasible method for removing underutilized material for weight reduction. Design optimization has been conducted with an aim to reduce the maximum von Mises stress in the assembly to minimum by choosing optimum values for a set of design variables, including the weld spacing, weld diameter and overlap width.展开更多
The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds pred...The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.展开更多
This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have ...This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.展开更多
The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of ...The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of a series of corrosion level. Specimens either confined or unconfined were investigated for evaluation of the effect of confinement on bond strength and failure mode. Also, the tests were analyzed using nonlinear finite element analysis. It was shown that for both confined and unconfined steel bars, bond strength generally decreases as the corrosion level increases when corrosion level is relatively high. Confinement was demonstrated to provide excellent means to conteract bond loss for corroded reinforcing steel bars. It was shown that unconfined specimens generally split at a small slip with a large crack width and result in splitting failure while confined specimens contribute to a small crack width and generally cause a pullout failure. The analysis results agree reasonably well with the experiments.展开更多
Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quan...Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of S i.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.展开更多
文摘In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress, and peeling stress, taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure.
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
文摘The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.
基金Funded by the General Program of National Natural Science Foundation of China(Nos.51474189 and 51674222)the Excellent Youth Foundation of Hebei Scientific Committee,China(No.E2018203446)the Scientific Research Foundation of the Higher Education Institutions of Hebei Province,China(No.QN2015214)
文摘To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.
基金Supported by National Natural Science Foundation of China(Grant No.51705491)
文摘Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.
基金funded by the Engineering and Physical Science Research Council(EPSRC),UK(Grant Nos.EP/P027563/1 and EP/M028267/1)the Science and Technology Facilities Council(STFC)(Grant No.ST/R006105/1)the Bridging for Innovators Programme of Department for Business,Energy and Industrial Strategy(BEIS),UK.
文摘Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.
基金Financial support from the National Natural Science Foundation of China (22178190)the Major Science and Technology Innovation Project of Shandong Province (2018CXGC1102) is gratefully acknowledged。
文摘Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.
基金the National Key Research and Devel-opment Program of China(Grant No.2018YFA0605902)the National Natural Science Foun-dation of China(Grant Nos.20212024,11872136)China Postdoctoral Science Foundation(Grant No.2020M670746).
文摘Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentation behavior with a large external forces exerted,a freeze-bond model based on the dilated polyhedral discrete element method(DEM)is proposed.Herein,imaginary bonding is initialized at the contact points to transmit forces and moments,and the initiation of the damage is detected using the hybrid fracture model.The model is validated through the qualitative agreement between the simulation results and the analytical solution of two bonding particles.To study the effect of freeze-bond on the floating ice rubble,punch-through tests were simulated on the ice rubble under freezing and nonfreezing conditions.The deformation and resistance of the ice rubble are investigated during indenter penetration.The influence of the internal friction coefficient on the strength of the ice rubble is determined.The results indicate that the proposed model can properly describe the consolidated ice rubble,and the freeze-bond effect is of great significance to the ice rubble properties.
文摘In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.
基金the National Natural Science Foundation of China(60675040)the Specialized Researth Fund for the Doctoral Program of Higher Education(20070248021)
文摘A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical properties of silicone adhesive and the vacuum suction cup were experimentally analyzed. Based on the constitutive relationship of four parts in the bonding process, the dynamic bonding process was modeled systematically, and numerically simulated by a commercial finite element analysis code, Adina. The final bonding edge-alignment error and the thickness and uniformity of the adhesive layer were obtained from simulation and validated by experiments. A simulation platform was created for predicting the final bonding quality via adjusting bonding parameters when dimensions of the solar cells and adhesive were changed.
文摘The 1.3-dipolar cycloaddition reaction of 2-trifluoromethyl- oxazolone and the activated carbon-carbon multiple bond was studied and gave a convenient way to synthesize 2-trifluoromethylpyrrole derivatives.
基金financially supported by the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+1 种基金the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)supported by RUDN University Strategic Academic Leadership Program。
文摘Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.
基金sponsored by the MOEA(Ministry of Economic Affairs)from the Technology Development Program No.109-EC-17-A-25-1581。
文摘In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.
文摘Resistance spot welding and hybrid weld bonding have wide applications in the body work construction within the automobile industry. The integrity of the spot welds and applied adhesives determines the body assembly rigidity and dynamic performance. Incorporating contact nonlinearity and geometric nonlinearity, finite element analysis (FEA) have been carried out to investigate the structural stiffness and strength of both spot-welded and weld-bonded assemblies. Topology optimization has been performed to reveal the distributions of material effectiveness in the overlap regions and suggest a feasible method for removing underutilized material for weight reduction. Design optimization has been conducted with an aim to reduce the maximum von Mises stress in the assembly to minimum by choosing optimum values for a set of design variables, including the weld spacing, weld diameter and overlap width.
文摘The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074125)the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJA140006)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB140003)the Student Research Foundation of the Jiangsu University,China(Grant Nos.2010074 and 09A101)
文摘This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.
文摘The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of a series of corrosion level. Specimens either confined or unconfined were investigated for evaluation of the effect of confinement on bond strength and failure mode. Also, the tests were analyzed using nonlinear finite element analysis. It was shown that for both confined and unconfined steel bars, bond strength generally decreases as the corrosion level increases when corrosion level is relatively high. Confinement was demonstrated to provide excellent means to conteract bond loss for corroded reinforcing steel bars. It was shown that unconfined specimens generally split at a small slip with a large crack width and result in splitting failure while confined specimens contribute to a small crack width and generally cause a pullout failure. The analysis results agree reasonably well with the experiments.
文摘Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of S i.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.