期刊文献+
共找到1,075篇文章
< 1 2 54 >
每页显示 20 50 100
Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate 被引量:2
1
作者 Teng Chen Yi-wen Hu +1 位作者 Cai Zhang Zhao-jian Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1471-1485,共15页
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.... As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing. 展开更多
关键词 Transition metal oxides carbon-supported transition metal oxides catalyst Ammonium perchlorate Thermal decomposition
下载PDF
One-step synthesis of carbon-supported copper nanoparticles from biomass for N-arylation of pyrazole 被引量:1
2
作者 Wenjing Li Yongjun Gao +2 位作者 Pei Tang Yao Xu Ding Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期859-865,共7页
Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and wer... Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species. 展开更多
关键词 Corn stalk carbon-supported copper N-arylation Ligand-free
下载PDF
Improvement of catalytic stability for CO_2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides 被引量:5
3
作者 Bing Li Zhenxin Xu +3 位作者 Fangli Jing Shizhong Luo Ning Wang Wei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1078-1085,共8页
Copper-promoted nickel-based metal nanoparticles (NPs) with high dispersion and good thermal stability were derived from layered-double hydroxides (LDHs) precursors that were facilely developed by a co-precipitation s... Copper-promoted nickel-based metal nanoparticles (NPs) with high dispersion and good thermal stability were derived from layered-double hydroxides (LDHs) precursors that were facilely developed by a co-precipitation strategy. The copper-promoted Ni-based metal NPs catalysts were investigated for methane reforming with carbon dioxide to hydrogen and syngas. A series of characterization techniques including XRD, N2adsorption and desorption, H2-TPR, XPS, CO2-TPD, TEM, TGA and in situ CH4-TPSR were utilized to determine the structure-function relationship for the obtained catalysts. The copper addition accelerated the catalyst reducibility as well as the methane activation, and made the Ni species form smaller NPs during both preparation and reaction by restricting the aggregation. However, with higher copper loading, the derived catalysts were less active during methane reforming with CO2to syngas. It was confirmed that the catalyst with 1 wt% Cu additive gave the higher catalytic activity and remained stable during long time reaction with excellent resistance to coking and to sintering. Furthermore, the mean size of metal NPs changed minimally from 6.6 to 7.9 nm even after 80 h of time on stream at temperature as high as 700 °C for this optimized catalyst. Therefore, this high dispersed anti-coking copper-promoted nickel catalyst derived from LDHs precursor could be prospective catalyst candidate for the efficient heterogeneous catalysis of sustainable CO2conversion. © 2016 Science Press 展开更多
关键词 Carbon dioxide CATALYSIS catalysts copper Metal nanoparticles METHANE Nickel Precipitation (chemical) Sintering Synthesis gas
下载PDF
Synthesis of 2-methylpyrazine from cyclocondensation of ethylene diamine and propylene glycol over promoted copper catalyst 被引量:2
4
作者 Fang Li Jing Wei Chu +2 位作者 Yuan Yuan Zhang Ye Qiang Chen Shi Zhong Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第6期752-755,共4页
The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized b... The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized by ICP-AES, BET and TPR. The results demonstrated that the dehydrogenation was improved by addition of chromium promoter. The selectivity of 2-methylpyrazine reached 84.75%, while the conversions of reactants were also enhanced. 展开更多
关键词 2-METHYLPYRAZINE copper catalyst DEHYDROGENATION Ethylene diamine Propylene glycol PROMOTER
下载PDF
Effect of Relative Humidity on Catalytic Combustion of Toluene over Copper Based Catalysts with Different Supports 被引量:5
5
作者 方健才 陈晓 +2 位作者 夏启斌 奚红霞 李忠 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第5期767-772,共6页
The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,an... The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible. 展开更多
关键词 copper based catalysts relative humidity TOLUENE catalytic combustion water inhibition
下载PDF
Catalytic performance of zinc-supported copper and nickel catalysts in the glycerol hydrogenolysis 被引量:3
6
作者 R.J.Chimentao B.C.Miranda +4 位作者 D.Ruiz F.Gispert-Guirado F.Medina J.Llorca J.B.O.Santos 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期185-194,共10页
Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion... Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion. 展开更多
关键词 GLYCEROL HYDROGENOLYSIS DEHYDRATION HYDROXYACETONE copper Nickel catalyst
下载PDF
Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition 被引量:4
7
作者 Tao Meng Nan Ren Zhen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期1051-1058,共8页
Five Cu-ZSM-5 catalysts were obtained by treating Na-ZSM-5 (Si/Al ratio = 15) with aqueous solutions of differ- ent Cu precursors (CuCl2, Cu(NO3)2, CuSO4, Cu(CH3COO)2, and ammoniacal copper (II) complex ion)... Five Cu-ZSM-5 catalysts were obtained by treating Na-ZSM-5 (Si/Al ratio = 15) with aqueous solutions of differ- ent Cu precursors (CuCl2, Cu(NO3)2, CuSO4, Cu(CH3COO)2, and ammoniacal copper (II) complex ion). After being pretreated in flowing He at 500 ℃ to form active Cu+, these catalysts exhibited quite different activities in cata- lytic decomposition of N2O. CZM-AC(II) (prepared by ammoniacal copper (II) complex ion) with 9.4 wt% Cu con- tent was the most active among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 400 ℃. CZM-CA (prepared using Cu( CH3COO)2 as the Cu precursor) with 2.8 wt% Cu content was the second most active catalyst among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 425 ℃. CZM-CC, CZM- CN, and CZM-CS prepared by using CuCl2, Cu(NO3)2, or CuSO4 as the Cu precursor with similar Cu contents (≈1.7 wt%) were the least active among these Cu-ZSM-5 catalysts, achieving ca. 90% N2O conversion at 500 ℃. XRD, ICP, SEM, TEM, EDX-mapping, and CO-IR experiments were conducted to characterize relevant samples. The superior activity of CZM-AC(II) can be attributed to the high contents of total Cu+ and dimeric Cu+ among these samples. The influence of co-fed O2 or H2O on the catalytic performance of typical samples was also studied. 展开更多
关键词 copper precursor CU-ZSM-5 N2O decomposition CATALYSIS catalyst ZEOLITE
下载PDF
Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts 被引量:4
8
作者 Yan Zhou Aling Chen +1 位作者 Jing Ning Wenjie Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期928-937,共10页
The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species... The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria. 展开更多
关键词 Cu/CeO2 catalyst Ceria shape Oxygen vacancy copper particle copper-ceria interface Active site
下载PDF
Bifunctionality of Cu/ZnO catalysts for alcohol-assisted low-temperature methanol synthesis from syngas:Effect of copper content 被引量:1
9
作者 Ilho Kim Gihoon Lee +2 位作者 Heondo Jeong Jong Ho Park Ji Chul Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期373-379,共7页
Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction interme... Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction. 展开更多
关键词 Low-temperature methanol synthesis Alcohol-assisted Bifunctionality Cu/ZnO catalysts copper content
下载PDF
LOCAL STRUCTURE OF COPPER IN Cu-ZSM-5 CATALYST FOR NITRIC OXIDE DECOMPOSITION 被引量:1
10
作者 Shu Nong FANG Yi Lu FU Pei Yan LIN (Dept. of Chem. Phys., Univ. of Sci. k Tech. of China, Hefei 830026) 《Chinese Chemical Letters》 SCIE CAS CSCD 1994年第5期417-418,共2页
The local struetnres of Cu in ZSM-5 have been investigated by EXAFS method. The copper ions have saturated oxygen coordination when the exchange degree is lower than 20, but they are inactive. Unsaturated oxygen coord... The local struetnres of Cu in ZSM-5 have been investigated by EXAFS method. The copper ions have saturated oxygen coordination when the exchange degree is lower than 20, but they are inactive. Unsaturated oxygen coordination of copper species is necessary for NO decomposition. Copper species are not easy to aggregate in redox treatment because of ZSM-5 structure. 展开更多
关键词 Cu ZSM catalyst copper
下载PDF
Catalytic combustion of methane over nano ZrO_2-supported copper-based catalysts 被引量:6
11
作者 Fen Fen Qua Wei Chu +2 位作者 Li Min Shi Mu Hua Chen Jin Yan Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第8期993-996,共4页
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support,... The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion. 展开更多
关键词 Nano ZrO2 copper-based catalysts Catalytic combustion METHANE
下载PDF
Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas 被引量:2
12
作者 Lili Wang Wen Ding +2 位作者 Yingwei Liu Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期487-492,共6页
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ... Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas. 展开更多
关键词 aluminum emulsion copper-based catalysts methanol synthesis Cu+/Cu0
下载PDF
CO Selective Oxidation in Hydrogen-Rich Gas over Copper-Series Catalysts 被引量:1
13
作者 HanboZou XinfaDong WeimingLin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第1期29-34,共6页
The performances of CO selective oxidation in hydrogen-rich gas over fourcatalytic systems of CuO/ZrO_2, CuO/MnO_2, CuO/CoO and CuO/CeO_2 were compared. The reducibility ofthese catalysts and the effect of CuO and CeO... The performances of CO selective oxidation in hydrogen-rich gas over fourcatalytic systems of CuO/ZrO_2, CuO/MnO_2, CuO/CoO and CuO/CeO_2 were compared. The reducibility ofthese catalysts and the effect of CuO and CeO_2 molar ratio of CuO/CeO_2 catalysts on the activityof selective CO oxidation are investigated by XRD and TPR methods. The results show that thecatalysts with the exception of CuO/ZrO_2 have the interactions between CuO and CoO, CeO_2 or MnO_2,which result in a decrease in the reduction temperature. Among the catalysts studied, CuO/ZrO_2catalyst shows the lowest catalytic activity while CuO/CeO_2 catalyst exhibits the best catalyticperformance. The CuO(10%)/CeO_2 catalyst attains the highest CO conversion and selectivity at 140and 160℃. The addition of 9% H_2O in the reactant feed decreases the activity of CuO/CeO_2 catalystbut increases its CO selectivity. 展开更多
关键词 hydrogen-rich gas copper-series catalyst CuO/CeO_2 catalyst selectiveoxidation carbon monoxide
下载PDF
POLYKETONE FROM ETHYLENE WITH CARBON MONOXIDE CATALYZED BY NOVEL CATALYST SYSTEMS BASED ON COPPER WITH BIDENTATE PHOSPHORUS CHELATING LIGANDS
14
作者 彭国卿 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第4期479-482,共4页
Copolymerization of ethylene with carbon monoxide was pertormed with Cu catalyst systems. Novel catalystsystems based on Cu (Cu(CH_3COO)_2/ligand/acid) were firstly reported for the copolymerization of ethylene with c... Copolymerization of ethylene with carbon monoxide was pertormed with Cu catalyst systems. Novel catalystsystems based on Cu (Cu(CH_3COO)_2/ligand/acid) were firstly reported for the copolymerization of ethylene with carbonmonoxide, in which the ligand was a bidentate phosphorus chelating ligand. The experimental results showed that this kindof Cu catalyst system exhibited high activity. When DPPP (1, 3-bis(diphenylphosphine)propane) and CH_3COOH were usedas ligand and acid, the corresponding catalyst system had the best activity of 108.1 g copolymer/(gCu·h). The novel Cu catalyst system had the advantages of high stability and low cost. 展开更多
关键词 copper catalyst COPOLYMERIZATION ETHYLENE Carbon monoxide POLYKETONE
下载PDF
Applications of Enzyme-simulating Copper Complex Catalyst in Low-temperature Scouring/Bleaching of Cotton Knits
15
作者 WANG Shenxi HU Defang +3 位作者 GUO Yuliang LI Shiqi SHEN Li ZHU Quan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期193-197,共5页
An enzyme-stimulating catalyst( PTL) with copper ions( Cu^(2+)) as the activation center and aminophosphonate as ligand was developed and applied in low-temperature scouring/bleaching of cotton knits. The optimal weig... An enzyme-stimulating catalyst( PTL) with copper ions( Cu^(2+)) as the activation center and aminophosphonate as ligand was developed and applied in low-temperature scouring/bleaching of cotton knits. The optimal weight ratio of Cu^(2+) to aminophosphonate was 1 ∶75. Via orthodox and single-factor experiments,the most efficient formula for low-temperature scouring/bleaching was composed of 0. 4 g/L high-efficiency degreaser DM-1130,1. 5 g/L PTL,2. 0 g/L sodium hydroxide( NaOH),and 7. 0 g/L 30% hydrogen peroxide( H_2O_2). The PTL could not only increase the whiteness of cotton knits,but also remove pectin to enhance capillary effect. 展开更多
关键词 copper aminophosphonate enzyme-simulating catalyst( PTL ) LOW-TEMPERATURE scouring/bleaching cotton knits
下载PDF
Synthesis of Multifunctionalised 2-Substituted Benzimidazoles Using Copper (II) Hydroxide as Efficient Solid Catalyst
16
作者 Murugulla Adharvana Chari   +2 位作者 Zaied-A-Mosaa Donthabakthuni Shobha Sridhar Malayalama 《International Journal of Organic Chemistry》 2013年第4期243-250,共8页
Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room tempe... Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively. 展开更多
关键词 O-PHENYLENEDIAMINE ALDEHYDES copper (II) HYDROXIDE Solid catalyst Multifunctionalised BENZIMIDAZOLES
下载PDF
Effect of Ceria on Structure and Thermostability of Copper-Iron-Oxide Catalyst
17
作者 卢冠忠 王幸宜 +1 位作者 王筠松 汪仁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第3期190-195,共6页
The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases... The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature. 展开更多
关键词 rare earths CERIA copper-iron-oxide catalyst thermostability
下载PDF
Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
18
作者 Weigang Hu Haoqi Liu +7 位作者 Yuankun Zhang Jiawei Ji Guangjun Li Xiao Cai Xu Liu Wen Wu Xu Weiping Ding Yan Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1079-1084,共6页
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can... Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production. 展开更多
关键词 NANOCLUSTER PHOTOCATALYSIS Methanol steam reforming Atomically precise copper catalyst
下载PDF
An effective catalyst carrier SiO_(2):Enhancing catalytic and combustion properties of CuFe_(2)O_(4)on energetic components
19
作者 Li Ding Chong Wan +2 位作者 Suhang Chen Zhao Qin Kangzhen Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期383-392,共10页
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_... To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant. 展开更多
关键词 copper ferrite Silicon dioxide Combustion catalyst Thermal decomposition Laser ignition
下载PDF
Nitrogen-doping boosts ^(*)CO utilization and H_(2)O activation on copper for improving CO_(2) reduction to C_(2+) products
20
作者 Yisen Yang Zhonghao Tan +5 位作者 Jianling Zhang Jie Yang Renjie Zhang Sha Wang Yi Song Zhuizhui Su 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1459-1465,共7页
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef... To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved. 展开更多
关键词 Electrocatalytic CO_(2)reduction reaction copper catalyst DOPING Multi-carbon products In situ Raman measurement
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部