As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and wer...Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.展开更多
The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized b...The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized by ICP-AES, BET and TPR. The results demonstrated that the dehydrogenation was improved by addition of chromium promoter. The selectivity of 2-methylpyrazine reached 84.75%, while the conversions of reactants were also enhanced.展开更多
The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,an...The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.展开更多
Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion...Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.展开更多
Five Cu-ZSM-5 catalysts were obtained by treating Na-ZSM-5 (Si/Al ratio = 15) with aqueous solutions of differ- ent Cu precursors (CuCl2, Cu(NO3)2, CuSO4, Cu(CH3COO)2, and ammoniacal copper (II) complex ion)...Five Cu-ZSM-5 catalysts were obtained by treating Na-ZSM-5 (Si/Al ratio = 15) with aqueous solutions of differ- ent Cu precursors (CuCl2, Cu(NO3)2, CuSO4, Cu(CH3COO)2, and ammoniacal copper (II) complex ion). After being pretreated in flowing He at 500 ℃ to form active Cu+, these catalysts exhibited quite different activities in cata- lytic decomposition of N2O. CZM-AC(II) (prepared by ammoniacal copper (II) complex ion) with 9.4 wt% Cu con- tent was the most active among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 400 ℃. CZM-CA (prepared using Cu( CH3COO)2 as the Cu precursor) with 2.8 wt% Cu content was the second most active catalyst among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 425 ℃. CZM-CC, CZM- CN, and CZM-CS prepared by using CuCl2, Cu(NO3)2, or CuSO4 as the Cu precursor with similar Cu contents (≈1.7 wt%) were the least active among these Cu-ZSM-5 catalysts, achieving ca. 90% N2O conversion at 500 ℃. XRD, ICP, SEM, TEM, EDX-mapping, and CO-IR experiments were conducted to characterize relevant samples. The superior activity of CZM-AC(II) can be attributed to the high contents of total Cu+ and dimeric Cu+ among these samples. The influence of co-fed O2 or H2O on the catalytic performance of typical samples was also studied.展开更多
The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species...The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.展开更多
Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction interme...Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.展开更多
The local struetnres of Cu in ZSM-5 have been investigated by EXAFS method. The copper ions have saturated oxygen coordination when the exchange degree is lower than 20, but they are inactive. Unsaturated oxygen coord...The local struetnres of Cu in ZSM-5 have been investigated by EXAFS method. The copper ions have saturated oxygen coordination when the exchange degree is lower than 20, but they are inactive. Unsaturated oxygen coordination of copper species is necessary for NO decomposition. Copper species are not easy to aggregate in redox treatment because of ZSM-5 structure.展开更多
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support,...The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.展开更多
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ...Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.展开更多
The performances of CO selective oxidation in hydrogen-rich gas over fourcatalytic systems of CuO/ZrO_2, CuO/MnO_2, CuO/CoO and CuO/CeO_2 were compared. The reducibility ofthese catalysts and the effect of CuO and CeO...The performances of CO selective oxidation in hydrogen-rich gas over fourcatalytic systems of CuO/ZrO_2, CuO/MnO_2, CuO/CoO and CuO/CeO_2 were compared. The reducibility ofthese catalysts and the effect of CuO and CeO_2 molar ratio of CuO/CeO_2 catalysts on the activityof selective CO oxidation are investigated by XRD and TPR methods. The results show that thecatalysts with the exception of CuO/ZrO_2 have the interactions between CuO and CoO, CeO_2 or MnO_2,which result in a decrease in the reduction temperature. Among the catalysts studied, CuO/ZrO_2catalyst shows the lowest catalytic activity while CuO/CeO_2 catalyst exhibits the best catalyticperformance. The CuO(10%)/CeO_2 catalyst attains the highest CO conversion and selectivity at 140and 160℃. The addition of 9% H_2O in the reactant feed decreases the activity of CuO/CeO_2 catalystbut increases its CO selectivity.展开更多
Copolymerization of ethylene with carbon monoxide was pertormed with Cu catalyst systems. Novel catalystsystems based on Cu (Cu(CH_3COO)_2/ligand/acid) were firstly reported for the copolymerization of ethylene with c...Copolymerization of ethylene with carbon monoxide was pertormed with Cu catalyst systems. Novel catalystsystems based on Cu (Cu(CH_3COO)_2/ligand/acid) were firstly reported for the copolymerization of ethylene with carbonmonoxide, in which the ligand was a bidentate phosphorus chelating ligand. The experimental results showed that this kindof Cu catalyst system exhibited high activity. When DPPP (1, 3-bis(diphenylphosphine)propane) and CH_3COOH were usedas ligand and acid, the corresponding catalyst system had the best activity of 108.1 g copolymer/(gCu·h). The novel Cu catalyst system had the advantages of high stability and low cost.展开更多
An enzyme-stimulating catalyst( PTL) with copper ions( Cu^(2+)) as the activation center and aminophosphonate as ligand was developed and applied in low-temperature scouring/bleaching of cotton knits. The optimal weig...An enzyme-stimulating catalyst( PTL) with copper ions( Cu^(2+)) as the activation center and aminophosphonate as ligand was developed and applied in low-temperature scouring/bleaching of cotton knits. The optimal weight ratio of Cu^(2+) to aminophosphonate was 1 ∶75. Via orthodox and single-factor experiments,the most efficient formula for low-temperature scouring/bleaching was composed of 0. 4 g/L high-efficiency degreaser DM-1130,1. 5 g/L PTL,2. 0 g/L sodium hydroxide( NaOH),and 7. 0 g/L 30% hydrogen peroxide( H_2O_2). The PTL could not only increase the whiteness of cotton knits,but also remove pectin to enhance capillary effect.展开更多
Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room tempe...Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively.展开更多
The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases...The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.展开更多
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can...Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.展开更多
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_...To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant.展开更多
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef...To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.展开更多
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
基金supported by the Natural Science Foundation of China(91645115 and 21473003)High-level talents funding project of Hebei(CL201601,E2016100015)science technology research and development guidance program project of Baoding City(No.16ZF027)
文摘Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.
文摘The 2-methylpyrazine was synthesized by catalytic reaction of ethylene diamine and propylene glycol at 380 ℃. The alumina supported copper catalysts with promoter were prepared by impregnation method, characterized by ICP-AES, BET and TPR. The results demonstrated that the dehydrogenation was improved by addition of chromium promoter. The selectivity of 2-methylpyrazine reached 84.75%, while the conversions of reactants were also enhanced.
基金Supported by the National-Natural Science Foundation of China (20936001), the Natural Science Foundation of Guangdong Province, and the State Key Lab of Subtropical Building Science, South China University of Technology (x2yj C709028Z).
文摘The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.
基金financial support from Fondecyt.R.J.Chimentao is grateful to Fondecyt 1180243Fondecyt 1161660+3 种基金the Universitat Rovira i VirgiliUniversidad de Costa Rica for the financial supportICREA Academia programGC 2017 SGR 128.
文摘Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.
基金Supported by the National Natural Science Foundation of China(Grant No.21477022)
文摘Five Cu-ZSM-5 catalysts were obtained by treating Na-ZSM-5 (Si/Al ratio = 15) with aqueous solutions of differ- ent Cu precursors (CuCl2, Cu(NO3)2, CuSO4, Cu(CH3COO)2, and ammoniacal copper (II) complex ion). After being pretreated in flowing He at 500 ℃ to form active Cu+, these catalysts exhibited quite different activities in cata- lytic decomposition of N2O. CZM-AC(II) (prepared by ammoniacal copper (II) complex ion) with 9.4 wt% Cu con- tent was the most active among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 400 ℃. CZM-CA (prepared using Cu( CH3COO)2 as the Cu precursor) with 2.8 wt% Cu content was the second most active catalyst among these Cu-ZSM-5 catalysts, achieving almost complete N2I conversion at 425 ℃. CZM-CC, CZM- CN, and CZM-CS prepared by using CuCl2, Cu(NO3)2, or CuSO4 as the Cu precursor with similar Cu contents (≈1.7 wt%) were the least active among these Cu-ZSM-5 catalysts, achieving ca. 90% N2O conversion at 500 ℃. XRD, ICP, SEM, TEM, EDX-mapping, and CO-IR experiments were conducted to characterize relevant samples. The superior activity of CZM-AC(II) can be attributed to the high contents of total Cu+ and dimeric Cu+ among these samples. The influence of co-fed O2 or H2O on the catalytic performance of typical samples was also studied.
文摘The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.
基金supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT & Future Planning (2015M3D3A1A01064908)
文摘Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.
文摘The local struetnres of Cu in ZSM-5 have been investigated by EXAFS method. The copper ions have saturated oxygen coordination when the exchange degree is lower than 20, but they are inactive. Unsaturated oxygen coordination of copper species is necessary for NO decomposition. Copper species are not easy to aggregate in redox treatment because of ZSM-5 structure.
文摘The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.
文摘Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.
基金This work was financially supported by Guangdong Province Natural Science Foundation of China(000435), the Doctoral Program Foundation of the Ministry of Education (20010561003) Guangzhou Municipal Science and Technology Project(2001J1C0211)
文摘The performances of CO selective oxidation in hydrogen-rich gas over fourcatalytic systems of CuO/ZrO_2, CuO/MnO_2, CuO/CoO and CuO/CeO_2 were compared. The reducibility ofthese catalysts and the effect of CuO and CeO_2 molar ratio of CuO/CeO_2 catalysts on the activityof selective CO oxidation are investigated by XRD and TPR methods. The results show that thecatalysts with the exception of CuO/ZrO_2 have the interactions between CuO and CoO, CeO_2 or MnO_2,which result in a decrease in the reduction temperature. Among the catalysts studied, CuO/ZrO_2catalyst shows the lowest catalytic activity while CuO/CeO_2 catalyst exhibits the best catalyticperformance. The CuO(10%)/CeO_2 catalyst attains the highest CO conversion and selectivity at 140and 160℃. The addition of 9% H_2O in the reactant feed decreases the activity of CuO/CeO_2 catalystbut increases its CO selectivity.
文摘Copolymerization of ethylene with carbon monoxide was pertormed with Cu catalyst systems. Novel catalystsystems based on Cu (Cu(CH_3COO)_2/ligand/acid) were firstly reported for the copolymerization of ethylene with carbonmonoxide, in which the ligand was a bidentate phosphorus chelating ligand. The experimental results showed that this kindof Cu catalyst system exhibited high activity. When DPPP (1, 3-bis(diphenylphosphine)propane) and CH_3COOH were usedas ligand and acid, the corresponding catalyst system had the best activity of 108.1 g copolymer/(gCu·h). The novel Cu catalyst system had the advantages of high stability and low cost.
基金South Wisdom Valley Innovative Research Team Program(No.2013CXTD05)
文摘An enzyme-stimulating catalyst( PTL) with copper ions( Cu^(2+)) as the activation center and aminophosphonate as ligand was developed and applied in low-temperature scouring/bleaching of cotton knits. The optimal weight ratio of Cu^(2+) to aminophosphonate was 1 ∶75. Via orthodox and single-factor experiments,the most efficient formula for low-temperature scouring/bleaching was composed of 0. 4 g/L high-efficiency degreaser DM-1130,1. 5 g/L PTL,2. 0 g/L sodium hydroxide( NaOH),and 7. 0 g/L 30% hydrogen peroxide( H_2O_2). The PTL could not only increase the whiteness of cotton knits,but also remove pectin to enhance capillary effect.
文摘Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively.
文摘The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.
基金financial support from National Natural Science Foundation of China(22125202,21932004,22101128)Natural Science Foundation of Jiangsu Province(BK20220033)。
文摘Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.
基金the National Nature Science Foundation of China(Grant Nos.21673178,22105160)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-ZD-07)+1 种基金the Foundation of Key Laboratory of Defense Science and technology(Grant No.6142603032213)the Key Science and Technology Innovation Team of Shaanxi Province(Grant No.2022TD-33).
文摘To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant.
基金supported by National Natural Science Foundation of China (22033009, 22121002, 22238011)。
文摘To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.