Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ...Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.展开更多
Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for ...Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.展开更多
In this paper, blood compatibility of carbonnitride film synthesized by ion beam enhanced deposition is studied. Clotting time measurement, platelet adhesion test and surface energy determination were performed to eva...In this paper, blood compatibility of carbonnitride film synthesized by ion beam enhanced deposition is studied. Clotting time measurement, platelet adhesion test and surface energy determination were performed to evaluate the interaction between blood and material. The results show that carbonnitride film has better blood compatibility than titanium, and may be promising in biomaterial filed.展开更多
基金financially supported by the National Natural Science Foundation of China(22309032)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+1 种基金the Science and Technology Program of Guangzhou(2023A04J1395)the GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)。
文摘Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.
基金supported by the Pilot Program of University of Liaoning Innovation and Education Reform~~
文摘Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.
文摘In this paper, blood compatibility of carbonnitride film synthesized by ion beam enhanced deposition is studied. Clotting time measurement, platelet adhesion test and surface energy determination were performed to evaluate the interaction between blood and material. The results show that carbonnitride film has better blood compatibility than titanium, and may be promising in biomaterial filed.