An innovative and sustainable carbothermal reduction and nitridation(CTRN) process of ilmenite(FeTiO_3) using a mixture of polyethylene terephthalate(PET) and coal as the primary reductant under an H_2–N_2 atmosphere...An innovative and sustainable carbothermal reduction and nitridation(CTRN) process of ilmenite(FeTiO_3) using a mixture of polyethylene terephthalate(PET) and coal as the primary reductant under an H_2–N_2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride(TiOxCyNz) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction(XRD),scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX),and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET,iron distinctly separated from the synthesized Ti OxCyNz phase. With increasing PET content in the sample,the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO_(0.02)C_(0.13)N_(0.85) with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO_3 exhibited a spherical morphology,which is conducive for Fe removal via the Becher process.展开更多
Zircon ( ≤44 μm) and carbon black (≤30μm) were used as starting materials and mixed for 24 h using anhydrous ethanol as medium with the mass ratio of 100:40, dried fully at 60 ℃ and then dry mixed for 10 h. ...Zircon ( ≤44 μm) and carbon black (≤30μm) were used as starting materials and mixed for 24 h using anhydrous ethanol as medium with the mass ratio of 100:40, dried fully at 60 ℃ and then dry mixed for 10 h. Specimens with size of Ф20 mm × 5 mm were pressed under 60 MPa, then dried fully at 120 ℃ , put into a furnace with 1. 0 L ·min^-1 nitrogen gas and fired at 1 400, 1 450, 1 480 and 1 500℃ for 6, 9 and 12 h, respectively. The phase composition and microstructure of the specimens were studied by XRD and SEM, and the carbothermal reduction and nitridation reaction process was thermodynamically analyzed. The results show that using zircon and carbon black as starting materials, ZrN - Si3N4 composite is synthesized by carbothermal reduction and nitridation reaction in nitrogen atmosphere. The composites with different compositions are obtained by controlling the firing temperature and partial pressure of CO gas. The proper firing temperature and holding time to synthesize ZrN - Si3N4 composite are 1 500 ℃ for 12 h.展开更多
The particle size of starting materials, the homogeneity of the carbon/oxide mixtures, and the carbon content are important parameters for a rapid reaction. The influences of technological parameters(carbon particle...The particle size of starting materials, the homogeneity of the carbon/oxide mixtures, and the carbon content are important parameters for a rapid reaction. The influences of technological parameters(carbon particle size, oxide particle size, mixing method, carbon content) on the reaction rate of carbothermal reduction and nitridation of titanium dioxide (TiO2 ) were investigated by a continuous thermo-gravimetric analyzer for large size specimen. The carbon particle size is the most impor tant parameter for a rapid reaction, but carbon particle may have no influence on the morphology of titanium nitride (TiN) powder. Oxide particles are the precursors of TiN powder, but the TiO2 particles size has very little influence on the reaction rate. The carbon content not only influences the reaction rate to some degree, but also influences the purity of TiN powder. The mixing method of the specimen has very little influence on the reaction rate. These results are suitable for other nitrides and carbides prepared by carbothermal reduction method.展开更多
Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precur- sor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive),...Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precur- sor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to -20 μm. The precursor was subsequently calcined under nitrogen at 1200-1550℃ for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300℃, and the complete transition of SiQ into Si3N4 was found at 1550℃. The Si3N4 powders, synthesized at 1550℃, exhibit a mixture phase of α- and -Si3N4 and consist of mainly agglomerates of fine particles of 100-300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.展开更多
High-quality ferrovanadium nitride(FeV45N,FeV55N and Fe65N)was fabricated using the raw materials of Fe_(3)O_(4),V_(2)O_(5) and graphite via carbothermal reduction nitridation method.Compared with the traditional meth...High-quality ferrovanadium nitride(FeV45N,FeV55N and Fe65N)was fabricated using the raw materials of Fe_(3)O_(4),V_(2)O_(5) and graphite via carbothermal reduction nitridation method.Compared with the traditional methods,it shortens the production process of ferrovanadium nitride by avoiding the preparation of ferrovanadium.The effects of C/O molar ratio and reaction temperature on phase transition,density,carbon,oxygen and nitrogen contents and microstructure were investigated.The appropriate C/O molar ratio is crucial to obtain the products with high nitrogen content.It is also found that a higher temperature is beneficial for the densification,and the density of the products obtained at 1550℃ is much higher than that at 1500℃.Moreover,a higher temperature contributes to the increase in nitrogen content owing to the higher reaction kinetics.The carbothermal reduction nitridation method is proved to be a facile route to fabricate cost-effective ferrovanadium nitride and is possible to be applied for industrial production.展开更多
Among nitride fibers,aluminum nitride(AlN)fibers have been developed for various advanced applications due to their mechanical flexibility,high thermal conductivity,and excellent electrical insulation and chemical sta...Among nitride fibers,aluminum nitride(AlN)fibers have been developed for various advanced applications due to their mechanical flexibility,high thermal conductivity,and excellent electrical insulation and chemical stability.This article presents an overview on the recent progress of AlN fibers.The properties of AlN,particularly the thermal conductivity of AlN in polymer matrix composites are introduced.Afterward,two major approaches,carbothermal reduction and nitriding polycrystalline alumina fiber,for the preparation of AlN fibers are discussed.The carbothermal reduction includes electrospinning,solution blow spinning,and chemical vapor deposition.Furthermore,some perspectives on the future directions for the preparation and application of fibrous AlN are highlighted.This review is expected to provide readers with valuable guidance on the preparation of AlN fibers and inspire researchers to explore more potential applications.展开更多
Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths o...Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.展开更多
AlN powders were synthesized by carbothermal reduction method from aluminum nitrate and glucose. The effect of urea on the preparation and nitridation of the precursors was studied. It is found that urea can affect th...AlN powders were synthesized by carbothermal reduction method from aluminum nitrate and glucose. The effect of urea on the preparation and nitridation of the precursors was studied. It is found that urea can affect the morphology and composition of the precursor as well as the nitridation process. During the nitridation process of the precursor prepared without urea, α-Al 2O 3 and AlON are detected and a high temperature(1 600 ℃) is needed for a complete conversion. While for the precursor prepared with urea, a complete conversion is got at a relatively low temperature(1 400 ℃) and AlN is synthesized directly from γ-Al 2O 3, with no sign of the formation of α-Al 2O 3 and AlON. AlN powders synthesized from the precursor prepared without urea agglomerate badly, while the powders synthesized from the precursor prepared with urea are soft aggregates of fine particle, which can be easily dispersed.展开更多
基金financial support from Universiti Sains Malaysia(USM)Fellowship(APEX 1002/JHEA/ATSG4001)financially supported by USM and Ministry of Higher Education(MOHE)of Malaysia through Fundamental Research Grant Scheme(FRGS)(Nos.203/PBAHAN/6071230 and 203/PBAHAN/607126)Research University Grant for Individual(RUI)from USM(No.1001/PBAHAN/814273)
文摘An innovative and sustainable carbothermal reduction and nitridation(CTRN) process of ilmenite(FeTiO_3) using a mixture of polyethylene terephthalate(PET) and coal as the primary reductant under an H_2–N_2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride(TiOxCyNz) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction(XRD),scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX),and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET,iron distinctly separated from the synthesized Ti OxCyNz phase. With increasing PET content in the sample,the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO_(0.02)C_(0.13)N_(0.85) with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO_3 exhibited a spherical morphology,which is conducive for Fe removal via the Becher process.
文摘Zircon ( ≤44 μm) and carbon black (≤30μm) were used as starting materials and mixed for 24 h using anhydrous ethanol as medium with the mass ratio of 100:40, dried fully at 60 ℃ and then dry mixed for 10 h. Specimens with size of Ф20 mm × 5 mm were pressed under 60 MPa, then dried fully at 120 ℃ , put into a furnace with 1. 0 L ·min^-1 nitrogen gas and fired at 1 400, 1 450, 1 480 and 1 500℃ for 6, 9 and 12 h, respectively. The phase composition and microstructure of the specimens were studied by XRD and SEM, and the carbothermal reduction and nitridation reaction process was thermodynamically analyzed. The results show that using zircon and carbon black as starting materials, ZrN - Si3N4 composite is synthesized by carbothermal reduction and nitridation reaction in nitrogen atmosphere. The composites with different compositions are obtained by controlling the firing temperature and partial pressure of CO gas. The proper firing temperature and holding time to synthesize ZrN - Si3N4 composite are 1 500 ℃ for 12 h.
文摘The particle size of starting materials, the homogeneity of the carbon/oxide mixtures, and the carbon content are important parameters for a rapid reaction. The influences of technological parameters(carbon particle size, oxide particle size, mixing method, carbon content) on the reaction rate of carbothermal reduction and nitridation of titanium dioxide (TiO2 ) were investigated by a continuous thermo-gravimetric analyzer for large size specimen. The carbon particle size is the most impor tant parameter for a rapid reaction, but carbon particle may have no influence on the morphology of titanium nitride (TiN) powder. Oxide particles are the precursors of TiN powder, but the TiO2 particles size has very little influence on the reaction rate. The carbon content not only influences the reaction rate to some degree, but also influences the purity of TiN powder. The mixing method of the specimen has very little influence on the reaction rate. These results are suitable for other nitrides and carbides prepared by carbothermal reduction method.
基金supported by the National Natural Science Foundation of China (Nos. 50802006 and 51172017)the Natural Science Foundation of Beijing (No. 2102028)+2 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-11-004A)the Fok Ying Tung Education Foundation Fund for Young College Teachers (No. 122016)the Public Foundation of Beijing Key Lab for Advanced Powder Metallurgy and Particulate Materials (USTB)
文摘Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precur- sor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to -20 μm. The precursor was subsequently calcined under nitrogen at 1200-1550℃ for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300℃, and the complete transition of SiQ into Si3N4 was found at 1550℃. The Si3N4 powders, synthesized at 1550℃, exhibit a mixture phase of α- and -Si3N4 and consist of mainly agglomerates of fine particles of 100-300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant No.51734002).
文摘High-quality ferrovanadium nitride(FeV45N,FeV55N and Fe65N)was fabricated using the raw materials of Fe_(3)O_(4),V_(2)O_(5) and graphite via carbothermal reduction nitridation method.Compared with the traditional methods,it shortens the production process of ferrovanadium nitride by avoiding the preparation of ferrovanadium.The effects of C/O molar ratio and reaction temperature on phase transition,density,carbon,oxygen and nitrogen contents and microstructure were investigated.The appropriate C/O molar ratio is crucial to obtain the products with high nitrogen content.It is also found that a higher temperature is beneficial for the densification,and the density of the products obtained at 1550℃ is much higher than that at 1500℃.Moreover,a higher temperature contributes to the increase in nitrogen content owing to the higher reaction kinetics.The carbothermal reduction nitridation method is proved to be a facile route to fabricate cost-effective ferrovanadium nitride and is possible to be applied for industrial production.
基金National Natural Science Foundation of China(No.52173059)。
文摘Among nitride fibers,aluminum nitride(AlN)fibers have been developed for various advanced applications due to their mechanical flexibility,high thermal conductivity,and excellent electrical insulation and chemical stability.This article presents an overview on the recent progress of AlN fibers.The properties of AlN,particularly the thermal conductivity of AlN in polymer matrix composites are introduced.Afterward,two major approaches,carbothermal reduction and nitriding polycrystalline alumina fiber,for the preparation of AlN fibers are discussed.The carbothermal reduction includes electrospinning,solution blow spinning,and chemical vapor deposition.Furthermore,some perspectives on the future directions for the preparation and application of fibrous AlN are highlighted.This review is expected to provide readers with valuable guidance on the preparation of AlN fibers and inspire researchers to explore more potential applications.
文摘Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.
文摘AlN powders were synthesized by carbothermal reduction method from aluminum nitrate and glucose. The effect of urea on the preparation and nitridation of the precursors was studied. It is found that urea can affect the morphology and composition of the precursor as well as the nitridation process. During the nitridation process of the precursor prepared without urea, α-Al 2O 3 and AlON are detected and a high temperature(1 600 ℃) is needed for a complete conversion. While for the precursor prepared with urea, a complete conversion is got at a relatively low temperature(1 400 ℃) and AlN is synthesized directly from γ-Al 2O 3, with no sign of the formation of α-Al 2O 3 and AlON. AlN powders synthesized from the precursor prepared without urea agglomerate badly, while the powders synthesized from the precursor prepared with urea are soft aggregates of fine particle, which can be easily dispersed.