期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Biomineralization Precursor Carrier System Based on Carboxyl- Functionalized Large Pore Mesoporous Silica Nanoparticles 被引量:1
1
作者 Sheng WEI Hua WU Xiao-juan LUO 《Current Medical Science》 SCIE CAS 2020年第1期155-167,共13页
Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is a... Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization. 展开更多
关键词 BIOMINERALIZATION mesoporous silica amorphous calcium phosphate BIOCOMPATIBILITY BIODEGRADABILITY carboxyl functionalization
下载PDF
羧基表面修饰与钾离子层间调控双重优化的氮化碳用于增强CO_(2)光还原性能 被引量:1
2
作者 关晨 廖宇龙 向全军 《Science China Materials》 SCIE EI CAS CSCD 2024年第2期473-483,共11页
对石墨相氮化碳(g-C_(3)N_(4))的表面和层间结构进行同时优化,可以显著提高其光生载流子分离效率.然而,将具有特定优势的改性策略有效整合,从而构建由体相到表面的电荷传输通道仍存在巨大挑战.在此,我们提出了一种利用羧基和钾离子共修... 对石墨相氮化碳(g-C_(3)N_(4))的表面和层间结构进行同时优化,可以显著提高其光生载流子分离效率.然而,将具有特定优势的改性策略有效整合,从而构建由体相到表面的电荷传输通道仍存在巨大挑战.在此,我们提出了一种利用羧基和钾离子共修饰g-C_(3)N_(4)的新方法,用于引导其动态电荷转移过程.具体而言,我们将羧基官能团修饰在表面,通过其吸电子效应产生的驱动力改善表面的载流子动力学.同时,我们将钾离子插入g-C_(3)N_(4)层间,通过连接相邻层间促进载流子的跨层传输.该双功能光催化剂在无需助催化剂或牺牲剂的气固体系中实现了高达17.93μmol g^(-1)h^(-1)的CO产出速率,比未改性的g-C_(3)N_(4)高出8.68倍.这项工作有望进一步加深我们对光催化剂材料体相和层间区域载流子定向迁移机制的理解. 展开更多
关键词 surface carboxyl functionalization interlayer potassium ions regulation charge carrier dynamics carbon nitride CO_(2)photoreduction
原文传递
Design of artificial biomimetic channels with Na^(+)permeation rate and selectivity potentially outperforming the natural sodium channel
3
作者 Zhi Zhu Yan Zhao +7 位作者 Chao Chang Shaojian Yan Tingyu Sun Shiyu Gu Yangmei Li Dengsong Zhang Chunlei Wang Xiao Cheng Zeng 《Nano Research》 SCIE EI CSCD 2024年第9期8638-8646,共9页
Artificial ion channels that enable high-efficiency ion transport have important implications in nanofluidics and biomedical applications such as drug delivery.Herein,we show a simulation-based chemical design of a bi... Artificial ion channels that enable high-efficiency ion transport have important implications in nanofluidics and biomedical applications such as drug delivery.Herein,we show a simulation-based chemical design of a biomimetic sodium channel that possesses permeation rate and selectivity potentially higher than those of the state-of-the-art natural vertebrate voltage-gated sodium channels.Importantly,our theoretical findings have undergone empirical testing,aligning well with the Arrhenius law as derived from a diverse range of experimental results.The high-efficiency ion transport is achieved by anchoring the carboxylate functional groups within the channel filter.A key chemical guiding principle underlying the ion channel design is that the free-energy barrier for the Na^(+)passage across the channel should be comparable to typical thermal energy at room temperature.With the implementation of the chemical design,we found that the relatively low free-energy barrier can be attributed to the compensation effect of the carboxylate groups to the partially lost oxygen shell of the ion within the ion channel,as well as to the consonant vibration of the ions inside and outside the channel.This mechanistic understanding brings new insight,at the molecular level,into the high-efficiency ion transport across the designed membrane channels.The proof of principle achieved from the simulations will stimulate future experimental confirmation and potential applications of the high-performance artificial channels in nanofluidics and in bioinspired iontronics. 展开更多
关键词 sodium channels anchoring carboxylate functional groups molecular dynamics simulations low free-energy barrier for ion passage thermal kinetic energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部