The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan...The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.展开更多
Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering.Herein,we report a composite hydrogel prepared fr...Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering.Herein,we report a composite hydrogel prepared from several biocompatible carboxymethyl konjac glucomannan(CKGM)/gelatin(G)/tannic acid(TA)functional nano-hydroxyapatite(TA@n-HA),which has good biodegradability and pH sensitivity.The mechanism of interaction between hydrogels was confirmed by Fourier transform infrared spectroscopy,X-ray diffraction,Scanning electron microscopy and Thermogravimetric analysis.The physico-chemical properties of CKGM/G hydrogels have been significantly improved through the incorporation of TA@n-HA within the matrix.Studies in the sustained release of epigallocatechin gallate(EGCG)demonstrated that the TA@n-HA/CKGM/G hydrogels exhibit not only better pH sensitive properties,but also enhanced biocompatibility and encapsulation in comparison to the matrix devoid of TA@n-HA.Consequently,TA@n-HA/CKGM/G hydrogels using EGCG as a drug release model show the potential for drug delivery.展开更多
In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymet...In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymethylated konjac glucomannan (CMKGM) aqueous solution according to predetermined ratio and drying at 30°C. The morphological structure, miscibility, thermal stability, mechanical properies, and swelling capacity of the blend films were studied by infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron micrograph (SEM), and measurements of the mechanical properties and swelling properties. The results demonstrated that there was strong interaction and good miscibility between CS and CMKGM resulted from intermolecular hydrogen bonding and electrostatic force. The mechanical properties in dry state and wet state, thermostability, and water swelling properties of the blend films were obviously improved. The best values of the tensile strength in the dry and wet state achieved 89 MPa and 49 MPa, respectively, when the CMKGM content was 30%(weight). The CS/ CMKGM blend films provided promising biomedical applications.展开更多
基金financial support from the Natural Science Foundation of Shandong Province(ZR2015CM037)the National Science Foundation of China(31571890)。
文摘The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.
基金financially supported by the National Natural Science Foundation of China(Grant No.31772045)the program on Fujian Agriculture and Forestry University of doctoral students going abroad(Grant No.324-112110089)scientific research foundation graduate school of Fujian Agriculture and Forestry University(Grant No.324-1122yb064)。
文摘Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering.Herein,we report a composite hydrogel prepared from several biocompatible carboxymethyl konjac glucomannan(CKGM)/gelatin(G)/tannic acid(TA)functional nano-hydroxyapatite(TA@n-HA),which has good biodegradability and pH sensitivity.The mechanism of interaction between hydrogels was confirmed by Fourier transform infrared spectroscopy,X-ray diffraction,Scanning electron microscopy and Thermogravimetric analysis.The physico-chemical properties of CKGM/G hydrogels have been significantly improved through the incorporation of TA@n-HA within the matrix.Studies in the sustained release of epigallocatechin gallate(EGCG)demonstrated that the TA@n-HA/CKGM/G hydrogels exhibit not only better pH sensitive properties,but also enhanced biocompatibility and encapsulation in comparison to the matrix devoid of TA@n-HA.Consequently,TA@n-HA/CKGM/G hydrogels using EGCG as a drug release model show the potential for drug delivery.
基金Supported by the National Science Foundation of China( No.2 99770 14 )
文摘In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymethylated konjac glucomannan (CMKGM) aqueous solution according to predetermined ratio and drying at 30°C. The morphological structure, miscibility, thermal stability, mechanical properies, and swelling capacity of the blend films were studied by infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron micrograph (SEM), and measurements of the mechanical properties and swelling properties. The results demonstrated that there was strong interaction and good miscibility between CS and CMKGM resulted from intermolecular hydrogen bonding and electrostatic force. The mechanical properties in dry state and wet state, thermostability, and water swelling properties of the blend films were obviously improved. The best values of the tensile strength in the dry and wet state achieved 89 MPa and 49 MPa, respectively, when the CMKGM content was 30%(weight). The CS/ CMKGM blend films provided promising biomedical applications.