Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference devi...Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference device. The approach reduces the size of the lead field matrix based on a priori knowledge of dipolar magnetic field map. Consequently, the computational demands and the accuracy of sparse source reconstruction are improved simultaneously. The simulation results demonstrate that the FGS method is capable of reconstructing sparse equivalent current sources using the magnetic field data generated by a single current source with varying orientation or multiple current sources generated randomly. In addition, we analyze the cardiac current source reconstructed with real MCG data at typical instants and discuss the electrical excitation conduction during the QRS complex based on moving sparse source imaging.展开更多
基金supported by the National Natural Science Foundation of China(60771030)the National HighTechnology Research and Development Program of China(2008AA02Z308)+2 种基金the Shanghai Science and Technology Development Foundation(08JC1421800)Shanghai Leading Academic Discipline Project(B004)the Open Project of State Key Laboratory of Function Materials for Information(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences)
文摘Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference device. The approach reduces the size of the lead field matrix based on a priori knowledge of dipolar magnetic field map. Consequently, the computational demands and the accuracy of sparse source reconstruction are improved simultaneously. The simulation results demonstrate that the FGS method is capable of reconstructing sparse equivalent current sources using the magnetic field data generated by a single current source with varying orientation or multiple current sources generated randomly. In addition, we analyze the cardiac current source reconstructed with real MCG data at typical instants and discuss the electrical excitation conduction during the QRS complex based on moving sparse source imaging.