The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P...The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.展开更多
基金Supported in Part by the Foundation of the Excellent State Key Laboratory under Grant 40523005,and the Ministry of Education of China
文摘The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.