期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法
1
作者 滕明 侯亚威 李伟杰 《现代雷达》 CSCD 北大核心 2024年第5期26-30,共5页
复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,... 复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。 展开更多
关键词 多扩展目标跟踪 椭圆随机超曲面 势概率假设密度滤波器 无迹变换
下载PDF
一种改进的GM-C-CPHD空间多目标跟踪算法
2
作者 谢贝旭 张艳 +1 位作者 陈金涛 张任莉 《上海航天(中英文)》 CSCD 2024年第1期89-96,共8页
随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性... 随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性模型参数,即面质比参数(AMR),基于协方差传递面质比参数对位置、速度状态估计的影响,提高空间目标跟踪精度。仿真分析表明:相对于GM-CPHD滤波器,目标数量的跟踪和状态估计性能均有所提高,具有良好的应用前景。 展开更多
关键词 空间多目标跟踪 高斯混合 势概率假设密度滤波 不确定性参数 面质比(AMR)
下载PDF
高斯混合粒子Cardinalized概率假设密度滤波被动测角多目标跟踪 被引量:5
3
作者 张俊根 姬红兵 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第1期46-52,共7页
为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示为随机集形式,通过Cardinalized概率假设密度(CPHD)滤波,递推计算目标的强度(即概率假设密度,PHD)及目标数的概率分布.然而对于被动测角的非线性跟踪问题,... 为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示为随机集形式,通过Cardinalized概率假设密度(CPHD)滤波,递推计算目标的强度(即概率假设密度,PHD)及目标数的概率分布.然而对于被动测角的非线性跟踪问题,CPHD无法获得闭合解.为此,本文提出一种新的高斯混合粒子CPHD算法,利用高斯混合近似PHD,避免了用聚类确定目标状态,同时,将拟蒙特卡罗(QMC)积分方法引入计算目标状态的预测和更新分布,取得了良好的效果. 展开更多
关键词 多目标跟踪 随机集 cardinalized概率假设密度 被动测角 拟蒙特卡罗
下载PDF
基于STCKF-CPHD算法的多RAM类目标跟踪 被引量:1
4
作者 张连仲 《中国惯性技术学报》 EI CSCD 北大核心 2023年第5期510-515,共6页
针对来袭RAM类目标机动能力强、数目多变且受到密集杂波干扰从而导致传统算法跟踪精度下降的问题,提出一种基于势概率假设密度框架下的强跟踪容积卡尔曼滤波算法(STCKF-CPHD)。首先,建立RAM类目标动力学模型,通过一阶马尔可夫过程对目... 针对来袭RAM类目标机动能力强、数目多变且受到密集杂波干扰从而导致传统算法跟踪精度下降的问题,提出一种基于势概率假设密度框架下的强跟踪容积卡尔曼滤波算法(STCKF-CPHD)。首先,建立RAM类目标动力学模型,通过一阶马尔可夫过程对目标外弹道质阻比参数进行建模,得到扩维后滤波器的状态空间模型。然后,引入强跟踪技术,设计带时变渐消因子的STCKF滤波器,解决目标机动导致的模型失配问题。最后,在CPHD的框架下,对目标的质阻比、状态、数量进行联合估计。仿真结果表明,所提算法可以对来袭多RAM类目标进行有效跟踪,目标最优子模型分配(OSPA)距离的跟踪精度相较于STCKF-PHD算法提高了15%。 展开更多
关键词 RAM类目标 质阻比 容积卡尔曼滤波 渐消因子 势概率假设密度
下载PDF
Convolution Kernels Implementation of Cardinalized Probability Hypothesis Density Filter
5
作者 Yue MA Jian-zhang ZHU +1 位作者 Qian-qing QIN Yi-jun HU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第4期739-748,共10页
The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P... The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter. 展开更多
关键词 random finite set (RFS) probability hypothesis density (PHD) filter cardinalized probability hypothesis density (cphd filter convolution kernel
原文传递
基于随机有限集的多目标跟踪技术综述 被引量:1
6
作者 严灵杰 顾杰 +4 位作者 姜余 徐敏 高昭昭 田保立 张铁男 《电子信息对抗技术》 2024年第1期81-88,共8页
随机有限集理论为多目标跟踪、多传感器融合和态势评估等问题提供了完整、统一的理论框架和解决方案。基于随机有限集的跟踪算法将多目标状态和量测建模为随机有限集,自然地引入航迹起始、终结机制,可实现目标数量和状态的同时估计。通... 随机有限集理论为多目标跟踪、多传感器融合和态势评估等问题提供了完整、统一的理论框架和解决方案。基于随机有限集的跟踪算法将多目标状态和量测建模为随机有限集,自然地引入航迹起始、终结机制,可实现目标数量和状态的同时估计。通过对随机有限集框架下的概率假设密度、带势概率假设密度、多目标多伯努利滤波器、扩展标签随机集滤波器和泊松多伯努利混合滤波器的研究进展进行详细梳理和综合对比,对基于随机有限集的多目标跟踪领域未来发展方向进行了分析和展望。 展开更多
关键词 多目标跟踪 多传感器融合 随机有限集 概率假设密度 带势概率假设密度
下载PDF
一种改进的CPHD多目标跟踪算法 被引量:12
7
作者 欧阳成 姬红兵 张俊根 《电子与信息学报》 EI CSCD 北大核心 2010年第9期2112-2118,共7页
CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标... CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。 展开更多
关键词 多目标跟踪 cphd滤波 航迹维持 漏检
下载PDF
基于随机有限集的UPF-CPHD多目标跟踪 被引量:8
8
作者 王慧斌 陈哲 +1 位作者 王鑫 马玉 《通信学报》 EI CSCD 北大核心 2012年第12期147-153,共7页
提出一种基于随机有限集的无迹粒子基数概率假设密度滤波(UPF-CPHD,unscented particle fil-ter-cardinality probability hypothesis density)的多目标跟踪方法。在粒子滤波框架下采用随机有限集(RFS,randomfinite sets)对多目标状态... 提出一种基于随机有限集的无迹粒子基数概率假设密度滤波(UPF-CPHD,unscented particle fil-ter-cardinality probability hypothesis density)的多目标跟踪方法。在粒子滤波框架下采用随机有限集(RFS,randomfinite sets)对多目标状态和观测进行描述。在UPF滤波框架下引入CPHD算法同时递推目标状态和目标数目,并计算最新观测信息,估计结果更加精确,弥补PHD估计目标数目不可靠的缺点。仿真实验表明,UPF-CPHD多目标跟踪方法能够降低超过50%的目标数目估计误差,并提高目标状态的估计精度。 展开更多
关键词 随机有限集 多目标跟踪 无迹粒子滤波 基数概率假设密度滤波
下载PDF
基于SMC-CPHD的多目标跟踪算法研究 被引量:5
9
作者 周卫东 张鹤冰 吉宇人 《宇航学报》 EI CAS CSCD 北大核心 2012年第4期443-450,共8页
针对CPHD滤波算法在多目标跟踪中计算难处理和对于局部目标估计存在漏检的问题,提出了基于序贯蒙特卡罗方法的基数概率假设密度(SMC-CPHD)滤波算法。这种方法是将SMC和CPHD两种滤波算法的优点相结合,用一些离散的粒子去接近PHD函数,不... 针对CPHD滤波算法在多目标跟踪中计算难处理和对于局部目标估计存在漏检的问题,提出了基于序贯蒙特卡罗方法的基数概率假设密度(SMC-CPHD)滤波算法。这种方法是将SMC和CPHD两种滤波算法的优点相结合,用一些离散的粒子去接近PHD函数,不仅解决了在滤波修正步没有闭式解的问题,而且避免了当某个目标发生漏检时,PHD权值的转移问题,在递推PHD函数的同时也递推基数分布。将此方法应用到有杂波存在复杂的多目标跟踪环境中,通过仿真实验,对CPHD滤波和SMC-CPHD滤波得出的结果进行比较,验证了本文所提出方法对多目标跟踪的可行性和精确性。 展开更多
关键词 随机集 基数概率假设密度 序贯蒙特卡罗 粒子 多目标跟踪
下载PDF
基于GM-CPHD滤波算法的主动声呐目标跟踪 被引量:4
10
作者 陈晓 李亚安 +1 位作者 李余兴 蔚婧 《西北工业大学学报》 EI CAS CSCD 北大核心 2018年第4期656-663,共8页
水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计... 水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计。传统的PHD滤波算法对目标数目估计存在敏感性,虽然CPHD滤波算法引入了对势分布的估计提高了对目标数目估计的精确性,但同时也增加了其计算量。对于高斯线性目标跟踪系统,GM-CPHD滤波算法对目标数目的估计比GM-PHD滤波更加精确。利用椭圆跟踪门策略减小了GM-CPHD滤波算法的计算量。同时,结合水下目标跟踪的特点,利用声呐方程得到一定虚警概率条件下的检测概率与距离关系的解析式,提出了一种适合于水下目标跟踪的自适应检测概率GM-CPHD滤波算法,仿真结果表明:该算法在多目标跟踪中可以更有效地实现目标状态及数目的估计。 展开更多
关键词 多目标跟踪 随机有限集 GM-PHD GM-cphd 声呐方程
下载PDF
基于关联的自适应新生目标强度CPHD滤波 被引量:3
11
作者 董鹏 敬忠良 +1 位作者 雷明 潘汉 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期725-731,共7页
量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标... 量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标,没有考虑关联问题。为此,本文提出了一种基于数据关联的改进算法。首先,给出了ATBI-CPHD在高斯混合CPHD(Gaussian mixture CPHD,GMCPHD)框架下的实现。其次,在GMCPHD滤波框架下采用一种基于量测标签的方法进行量测-估计关联,并引入高斯元标签进行航迹保持,在此基础上提出了一种航迹管理方法。最后采用量测波门进行量测-量测关联,利用关联后的量测产生新生目标。仿真结果表明,该算法可以在提高跟踪效果的同时提升计算效率。 展开更多
关键词 多目标跟踪 基数概率假设密度滤波 随机有限集 自适应新生目标强度
下载PDF
基于航迹—估计关联的GM-CPHD后处理算法 被引量:4
12
作者 陈金广 孙瑞 马丽丽 《计算机工程与应用》 CSCD 北大核心 2015年第8期189-194,共6页
高斯势概率假设密度滤波算法在低检测率条件下目标数目估计会出现偏差。针对该问题,提出了一种基于航迹—估计关联的GM-CPHD后处理算法。计算航迹和估计之间的距离矩阵,利用匈牙利指派算法进行航迹—估计关联。通过设定航迹的连续性阈... 高斯势概率假设密度滤波算法在低检测率条件下目标数目估计会出现偏差。针对该问题,提出了一种基于航迹—估计关联的GM-CPHD后处理算法。计算航迹和估计之间的距离矩阵,利用匈牙利指派算法进行航迹—估计关联。通过设定航迹的连续性阈值对短航迹进行裁剪,并以此消除虚假目标估计。利用拉格朗日插值对各条不连续的航迹进行插值,以弥补由于低检测率而造成的遗漏估计。仿真实验结果表明,该处理算法能够有效地提高目标数目的估计精度。 展开更多
关键词 目标跟踪 高斯混合势概率假设密度(GM-cphd)滤波 航迹-估计关联 拉格朗日插值
下载PDF
高斯过程回归的CPHD扩展目标跟踪 被引量:6
13
作者 李翠芸 王精毅 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第3期8-12,30,共6页
针对现有扩展目标跟踪算法中,形状估计复杂,在考虑漏检及杂波情况下目标跟踪精度不高等问题,提出了一种基于高斯过程回归的伽玛高斯混合势概率假设密度扩展目标跟踪算法.该算法采用星凸模型对目标进行建模,在伽玛高斯混合势概率假设密... 针对现有扩展目标跟踪算法中,形状估计复杂,在考虑漏检及杂波情况下目标跟踪精度不高等问题,提出了一种基于高斯过程回归的伽玛高斯混合势概率假设密度扩展目标跟踪算法.该算法采用星凸模型对目标进行建模,在伽玛高斯混合势概率假设密度滤波器对扩展目标运动状态估计良好的基础上,利用高斯过程回归对目标形状进行估计,实现了对扩展目标的有效跟踪.实验仿真表明,所提算法能够对目标的运动状态进行高效跟踪,且在扩展形状的估计精度、计算速度等方面要优于基于星凸随机超曲面的伽玛高斯混合势概率假设密度滤波器. 展开更多
关键词 星凸模型 高斯过程回归 势概率假设密度 形状估计
下载PDF
利用多普勒信息的单步初始化GMCPHD滤波器 被引量:2
14
作者 胡子军 张林让 张鹏 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2122-2126,共5页
标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步... 标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。 展开更多
关键词 多目标跟踪 带势概率假设密度 单步初始化 多普勒信息
下载PDF
基于VSMM的GMCPHD滤波算法在多机动目标跟踪的应用 被引量:3
15
作者 周卫东 张鹤冰 廖成毅 《系统工程与电子技术》 EI CSCD 北大核心 2013年第1期9-14,共6页
针对交互多模型(interacting multiple model,IMM)在多机动目标跟踪算法中存在的缺陷以及目标跟踪精度问题,提出了基于变结构多模型(variable structure multiple model,VSMM)的高斯混合基数概率假设密度(Gaussian mixture cardinalized... 针对交互多模型(interacting multiple model,IMM)在多机动目标跟踪算法中存在的缺陷以及目标跟踪精度问题,提出了基于变结构多模型(variable structure multiple model,VSMM)的高斯混合基数概率假设密度(Gaussian mixture cardinalized probability hypothesis density,GMCPHD)滤波算法。该算法利用了VSMM具有自适应性、时变性的特点,达到了在某一时刻能够选取与目标运动模式相匹配的模型集合的目的,相比于IMM考虑的仅是固定的模式集合具有很强的优越性。此外,GMCPHD滤波算法不仅避免了数据关联问题,而且通过高斯分布递推PHD函数的同时递推基数分布。最后,利用雷达作为传感器,对跟踪机动目标进行仿真,证明VSMM相比于IMM对于多机动目标跟踪更具有优越性,同时验证了VSMM-GMCPHD滤波算法具有提高机动目标跟踪精度,减小跟踪误差的作用。 展开更多
关键词 机动目标跟踪 高斯混合基数概率假设密度 交互多模型 变机构多模型
下载PDF
基于分治-贪心算法的高斯混合多观测站CPHD滤波器 被引量:3
16
作者 曲长文 冯奇 李廷军 《电子学报》 EI CAS CSCD 北大核心 2018年第10期2472-2479,共8页
针对现有的多观测站概率假设密度滤波器实现中存在依赖观测站处理顺序、计算复杂度高等问题,文中提出一种基于分治-贪心算法的高斯混合多观测站势概率假设密度滤波器.假设观测站个数为s,每个观测站的量测个数为n,相对于暴力分析法,分治... 针对现有的多观测站概率假设密度滤波器实现中存在依赖观测站处理顺序、计算复杂度高等问题,文中提出一种基于分治-贪心算法的高斯混合多观测站势概率假设密度滤波器.假设观测站个数为s,每个观测站的量测个数为n,相对于暴力分析法,分治算法使得子集选取问题的计算复杂度从O(ns)降到了O(ns).此外,在线性高斯模型假设条件下,给出多观测站势概率假设密度滤波实现的具体步骤.仿真结果证明,本文实现方法不受观测站处理顺序的影响,分治-贪心近似实现方法与暴力分析法的跟踪性能相当,但是运算耗时大大降低,提高了算法实现及应用的可行性. 展开更多
关键词 多目标跟踪 势概率假设密度 分治算法 贪心算法
下载PDF
抗“飞点”的UKF-GMPCPHD滤波算法 被引量:1
17
作者 黄伟平 徐毓 甘少武 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期34-39,共6页
为实现被动测角目标状态和数目的实时估计,在高斯混合粒子(Gaussian mixture particle,GMP)的势化概率假设密度(cardinalized probability hypothesis density,CPHD)滤波框架下,提出了基于抗"飞点"无迹卡尔曼滤波器(unscented... 为实现被动测角目标状态和数目的实时估计,在高斯混合粒子(Gaussian mixture particle,GMP)的势化概率假设密度(cardinalized probability hypothesis density,CPHD)滤波框架下,提出了基于抗"飞点"无迹卡尔曼滤波器(unscented Kalman filter,UKF)的GMPCPHD滤波算法,即抗"飞点"的UKF-GMPCPHD滤波算法。在该算法中,粒子滤波的重要性采样函数由抗"飞点"UKF产生,粒子的预测与更新采用拟蒙特卡罗(quasi-MonteCarlo,QMC)方式,目标状态的概率假设密度(probability hypothesis density,PHD)和势分布用一组高斯粒子滤波器(Gaussian particle filtering,GPF)近似。通过该算法与GMPCPHD、UKF-GMPPHD滤波算法的对比仿真,验证了该算法良好的跟踪性能。 展开更多
关键词 非线性跟踪 目标数目 势化概率假设密度 门限函数 拟蒙特卡罗
下载PDF
基于CPHD的PD雷达多目标检测前跟踪方法 被引量:1
18
作者 冯讯 江晶 +1 位作者 王陈 文立平 《空军预警学院学报》 2018年第1期1-5,10,共6页
针对强杂波背景下传统多目标检测前跟踪方法目标数目估计误差大、状态估计精度严重下降的问题,基于势化概率假设密度(CPHD)滤波理论提出一种多普勒雷达多目标检测前跟踪(TBD)方法.该方法在建立脉冲多普勒雷达多目标TBD观测模型的基础上... 针对强杂波背景下传统多目标检测前跟踪方法目标数目估计误差大、状态估计精度严重下降的问题,基于势化概率假设密度(CPHD)滤波理论提出一种多普勒雷达多目标检测前跟踪(TBD)方法.该方法在建立脉冲多普勒雷达多目标TBD观测模型的基础上,通过推导基于多普勒量测及具有幅度信息的扩维CPHD预测和更新方程,对目标状态和数目进行估计.在CPHD更新时,首先对目标位置更新,然后序贯使用多普勒量测进行二次更新,并采用高斯混合(Gaussian mixture)近似方法实现,提高估计精度和准确性.仿真结果表明,该方法可有效抑制杂波,实现对多个目标的跟踪. 展开更多
关键词 脉冲多普勒雷达 检测前跟踪 强杂波 势化概率假设密度 高斯混合
下载PDF
基于演化网络模型的箱粒子CPHD群目标跟踪 被引量:5
19
作者 程轩 宋骊平 姬红兵 《系统工程与电子技术》 EI CSCD 北大核心 2018年第5期961-967,共7页
提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降... 提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量。算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计。仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势。 展开更多
关键词 群目标跟踪 箱粒子滤波 区间分析 演化网络模型 势概率假设密度滤波
下载PDF
基于GGIW-CPHD的衍生扩展目标跟踪算法 被引量:2
20
作者 苗露 冯新喜 迟珞珈 《计算机工程与应用》 CSCD 北大核心 2019年第9期118-123,共6页
针对杂波环境下伽玛高斯逆威舍特混合势概率假设密度(GGIW-CPHD)滤波器难以有效提取衍生扩展目标的问题,提出采用多假设对衍生目标建模跟踪的方法。算法利用随机矩阵模型对扩展目标的形状和尺寸进行建模,并根据多假设模型对衍生事件进... 针对杂波环境下伽玛高斯逆威舍特混合势概率假设密度(GGIW-CPHD)滤波器难以有效提取衍生扩展目标的问题,提出采用多假设对衍生目标建模跟踪的方法。算法利用随机矩阵模型对扩展目标的形状和尺寸进行建模,并根据多假设模型对衍生事件进行预测,最后通过GGIW混合实现扩展目标运动状态、扩展状态和量测率的联合估计。实验结果表明,与标准GGIW-CPHD滤波算法相比,在含有衍生事件的情景下所提方法实现更好的目标势估计性能且具有较强的适用性。 展开更多
关键词 GGIW-cphd滤波器 衍生目标 随机矩阵
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部