The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P...The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.展开更多
CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标...CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。展开更多
标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步...标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。展开更多
提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降...提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量。算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计。仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势。展开更多
基金Supported in Part by the Foundation of the Excellent State Key Laboratory under Grant 40523005,and the Ministry of Education of China
文摘The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.
文摘CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。
文摘标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。
文摘提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量。算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计。仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势。