The Philippines is expecting a rise in the number of drivers that use mobile phones while driving.It is known as the“texting capital of the world”.The objectives of this study were to determine the predictors,risk p...The Philippines is expecting a rise in the number of drivers that use mobile phones while driving.It is known as the“texting capital of the world”.The objectives of this study were to determine the predictors,risk perceptions and the prevalence of cell phone use while driving among trainee residents of the University of the Philippines-Philippine General Hospital.This cross-sectional study employed total enumeration.A survey was first distributed to the target population,followed by a focus group discussion.Chi-square and multiple logistic regression were used to analyze data.Included in the final analysis were 175 drivers aged 25-30 years(mean=27.90+1.34).There was no significant difference in the risk perceptions of cell phone users vs.non-users,and most perceived hands-free devices safer to use(p=0.030).The reported prevalence is 90.68%;drivers have a significant overall unsafe attitude(p=0.007),and an unsafe attitude when using handsets when driving,even when this is known to be dangerous(p=0.003).In conclusion,driving with hands-free devices was perceived to be safer,although drivers have a high overall unsafe attitude.Driving for more than two years and having an unsafe attitude were found to be significant predictors of cell phone use while driving.Countermeasures must take into account these factors when instituting behavioral modification strategies and road safety policies concerning unsafe and distracted driving.展开更多
In the criminal cases of driving under the influence(DUI), DNA evidence can be collected from the deployed airbag of the motor vehicle and submitted to the crime lab for touch DNA analysis.The evidence can be acquired...In the criminal cases of driving under the influence(DUI), DNA evidence can be collected from the deployed airbag of the motor vehicle and submitted to the crime lab for touch DNA analysis.The evidence can be acquired when the skin cells are observed on the surface of the airbag in a traffic accident. However, the low quantity or quality of the evidence collected from a crime scene prevents further identification analysis in many cases. In the current study, we reported a case of identifying touch DNA extraction from the shed skin cells from the deployed airbag of a motor vehicle. We managed to collect DNA evidence from the shed skin cells in an airbag using a proper approach of collection and extraction. The 5.87 ng of extracted DNA was sufficient for genotyping and forensic identification, which helped to identify the driver of the car in collision with a pier in the street. In DUI cases and other traffic accidents, therefore, the amount of touch DNA extracted from the deployed airbag can be sufficient for DNA marker genotyping and further analysis.展开更多
为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误...为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.展开更多
There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to u...There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.展开更多
Three small bandgap non-fullerene(SBG NFAs) acceptors,BDTI,BDTI-2 F and BDTI-4 F,based on a carbon-oxygen bridged central core and thieno[3,4-b]thiophene linker,end-capped with varied electronwithdrawing terminal grou...Three small bandgap non-fullerene(SBG NFAs) acceptors,BDTI,BDTI-2 F and BDTI-4 F,based on a carbon-oxygen bridged central core and thieno[3,4-b]thiophene linker,end-capped with varied electronwithdrawing terminal groups,were designed and synthesized.The acceptors exhibit strong absorption from 600 nm to 1000 nm.The optimal device incorporating designed NFA and PTB7-Th polymer donor achieves a power conversion efficiency of 9.11% with near 0 eV HOMO offset.The work presents a case study of efficient non-fullerene solar cells with small HOMO offsets,which is achieved by blending PTB7-Th with fine-tuned SBG acceptor.展开更多
The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction w...The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.展开更多
文摘The Philippines is expecting a rise in the number of drivers that use mobile phones while driving.It is known as the“texting capital of the world”.The objectives of this study were to determine the predictors,risk perceptions and the prevalence of cell phone use while driving among trainee residents of the University of the Philippines-Philippine General Hospital.This cross-sectional study employed total enumeration.A survey was first distributed to the target population,followed by a focus group discussion.Chi-square and multiple logistic regression were used to analyze data.Included in the final analysis were 175 drivers aged 25-30 years(mean=27.90+1.34).There was no significant difference in the risk perceptions of cell phone users vs.non-users,and most perceived hands-free devices safer to use(p=0.030).The reported prevalence is 90.68%;drivers have a significant overall unsafe attitude(p=0.007),and an unsafe attitude when using handsets when driving,even when this is known to be dangerous(p=0.003).In conclusion,driving with hands-free devices was perceived to be safer,although drivers have a high overall unsafe attitude.Driving for more than two years and having an unsafe attitude were found to be significant predictors of cell phone use while driving.Countermeasures must take into account these factors when instituting behavioral modification strategies and road safety policies concerning unsafe and distracted driving.
基金This research was supported by the National Natural Science Foundation of China
文摘In the criminal cases of driving under the influence(DUI), DNA evidence can be collected from the deployed airbag of the motor vehicle and submitted to the crime lab for touch DNA analysis.The evidence can be acquired when the skin cells are observed on the surface of the airbag in a traffic accident. However, the low quantity or quality of the evidence collected from a crime scene prevents further identification analysis in many cases. In the current study, we reported a case of identifying touch DNA extraction from the shed skin cells from the deployed airbag of a motor vehicle. We managed to collect DNA evidence from the shed skin cells in an airbag using a proper approach of collection and extraction. The 5.87 ng of extracted DNA was sufficient for genotyping and forensic identification, which helped to identify the driver of the car in collision with a pier in the street. In DUI cases and other traffic accidents, therefore, the amount of touch DNA extracted from the deployed airbag can be sufficient for DNA marker genotyping and further analysis.
文摘为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.
基金supported by National Natural Science Foundation of China (Grant No. 50875173)Shanghai Municipal Education Commission Key Foundation of China (Grant No. 09ZZ157)Shanghai Leading Academic Discipline Project of China (Grant No. J50503)
文摘There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.
基金the National Key R&D Program of China (2017YFA0204701)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010200)+1 种基金National Basic Research Program of China (Program 973) (No. 2014CB643502)the National Natural Science Foundation of China (21572234, 21661132006, 91833304, 21402194) for their financial support。
文摘Three small bandgap non-fullerene(SBG NFAs) acceptors,BDTI,BDTI-2 F and BDTI-4 F,based on a carbon-oxygen bridged central core and thieno[3,4-b]thiophene linker,end-capped with varied electronwithdrawing terminal groups,were designed and synthesized.The acceptors exhibit strong absorption from 600 nm to 1000 nm.The optimal device incorporating designed NFA and PTB7-Th polymer donor achieves a power conversion efficiency of 9.11% with near 0 eV HOMO offset.The work presents a case study of efficient non-fullerene solar cells with small HOMO offsets,which is achieved by blending PTB7-Th with fine-tuned SBG acceptor.
文摘The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.