Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentia...Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.展开更多
Cardiotrophin-1 (CT-1) activates a distinct form of cardiac muscle cell hypertrophy in which the sarcomeric units are assembled in series. The aim of the study was to determine the expres- sion pattern of sarcomeric...Cardiotrophin-1 (CT-1) activates a distinct form of cardiac muscle cell hypertrophy in which the sarcomeric units are assembled in series. The aim of the study was to determine the expres- sion pattern of sarcomeric contractile protein α-actin, specialized eytoskeletal protein α-actinin and mitochondrial uncoupling protein-2 (UCP2) in myocardial remodeling induced by chronic exposure to CT-1. Kunming mice were intraperitoneally injected with carboxy-terminal polypeptide (CP) of CT-1 (CT-1-CP, 500 μg·kg-1·day^-1) for 1, 2, 3 and 4 week (s), respectively (4 groups obtained according to the injection time, n=10 each, with 5 males and 5 females in each group), Those injected with physiological saline for 4 weeks served as controls (n=10, with 5 males and 5 females). The heart tissues of mice were harvested at 1, 2, 3 or 4 week (s). Immunohistochemistry (IHC) and Western blotting (WB) were used to detect the distribution and expression of sarcomeric α-actin, α-aetinin and mitoehondrial UCP2 in myocardial tissues. IHC showed that α-actin was mainly distributed around the nuclei of cardiomyo- cytes, α-actinin concentrated around the striae and UCP2 scattered rather evenly in the plasma. The ex- pression of α-actin was slightly greater than that of α-actinin and UCP2 in the control group (IHC: χ^2=6.125; WB: F=0.249, P〉0.05) and it gradually decreased after exposure to CT-1-CP. There was no significant difference in the expression of α-actin between the control group and the CT-1-CP-treated groups (χ^2=7.386, P〉0.05). But Western blotting revealed significant difference in the expression of α-actin between the control group and the 4-week CT-1-CP-treated group (F=2.912; q=4.203, P〈0.05). Moreover, it was found that the expression of α-actinin increased stepwise with the exposure time in CT-1-CP-treated groups and differed significantly between CT-1-CP-treated groups and the control group (ICH: χ^2=21.977; WB: F=50.388; P〈0.01). The expression of UCP2 was initially increased (WB: control group vs. 1- or 2-week group, q values: 5.603 and 9.995, respectively, P〈0.01) and then de- creased (WB: control group vs. 3-week group, q=4.742, P〈0.01; control group vs. 4-week group, q=0.558, P〉0.05). It was suggested that long-term exposure to CT-1-CP could lead to the alteration in the expression of sarcomeric α-actin, α-actinin and mitochonclrial UCP2. The different expressions of sarcomeric structure proteins and mitochondrial UCP2 may be involved in myocardial remodeling.展开更多
基金This work was supported by the National Funds for Distinguished Young Scientists of China (No. 81325009) and National Nature Science Foundation of China (No. 81270168, No. 81227901), (Feng Cao BWS12J037), Innovation Team granted by Ministry of Education PRC (IRT1053), National Basic Research Program of China (2012CB518101). Shaanxi Province Program (2013K12-02-03, 2014KCT-20). The authors declare no conflict of interest.
文摘Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of a-myosin heavy chain (ct-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT- 1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT- 1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1 signaling pathway.
文摘Cardiotrophin-1 (CT-1) activates a distinct form of cardiac muscle cell hypertrophy in which the sarcomeric units are assembled in series. The aim of the study was to determine the expres- sion pattern of sarcomeric contractile protein α-actin, specialized eytoskeletal protein α-actinin and mitochondrial uncoupling protein-2 (UCP2) in myocardial remodeling induced by chronic exposure to CT-1. Kunming mice were intraperitoneally injected with carboxy-terminal polypeptide (CP) of CT-1 (CT-1-CP, 500 μg·kg-1·day^-1) for 1, 2, 3 and 4 week (s), respectively (4 groups obtained according to the injection time, n=10 each, with 5 males and 5 females in each group), Those injected with physiological saline for 4 weeks served as controls (n=10, with 5 males and 5 females). The heart tissues of mice were harvested at 1, 2, 3 or 4 week (s). Immunohistochemistry (IHC) and Western blotting (WB) were used to detect the distribution and expression of sarcomeric α-actin, α-aetinin and mitoehondrial UCP2 in myocardial tissues. IHC showed that α-actin was mainly distributed around the nuclei of cardiomyo- cytes, α-actinin concentrated around the striae and UCP2 scattered rather evenly in the plasma. The ex- pression of α-actin was slightly greater than that of α-actinin and UCP2 in the control group (IHC: χ^2=6.125; WB: F=0.249, P〉0.05) and it gradually decreased after exposure to CT-1-CP. There was no significant difference in the expression of α-actin between the control group and the CT-1-CP-treated groups (χ^2=7.386, P〉0.05). But Western blotting revealed significant difference in the expression of α-actin between the control group and the 4-week CT-1-CP-treated group (F=2.912; q=4.203, P〈0.05). Moreover, it was found that the expression of α-actinin increased stepwise with the exposure time in CT-1-CP-treated groups and differed significantly between CT-1-CP-treated groups and the control group (ICH: χ^2=21.977; WB: F=50.388; P〈0.01). The expression of UCP2 was initially increased (WB: control group vs. 1- or 2-week group, q values: 5.603 and 9.995, respectively, P〈0.01) and then de- creased (WB: control group vs. 3-week group, q=4.742, P〈0.01; control group vs. 4-week group, q=0.558, P〉0.05). It was suggested that long-term exposure to CT-1-CP could lead to the alteration in the expression of sarcomeric α-actin, α-actinin and mitochonclrial UCP2. The different expressions of sarcomeric structure proteins and mitochondrial UCP2 may be involved in myocardial remodeling.