An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic sola...An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.展开更多
Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D str...Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D structures have been proposed as a potential solution.Accordingly,this paper introduces a novel 3D^(63)Ni–SiC-based P^(+)PNN^(+)structure with a multi-groove design,avoiding the need for PN junctions on the inner surface,and thus reducing leakage current and power losses.Monte Carlo simulations were performed considering the fully coupled physical model to extend the electron–hole pair generation rate to a 3D structure,enabling the efficient design and development of betavoltaic batteries with complex 3D structures.As a result,the proposed model produces the significantly higher maximum output power density of 19.74μW/cm^(2) and corresponding short-circuit current,open-circuit voltage,and conversion efficiency of 8.57μA/cm^(2),2.45 V,and4.58%,respectively,compared with conventional planar batteries.From analysis of the carrier transport and collection characteristics using the COMSOL Multiphysics code,we provide deep insights regarding power increase,and elucidate the discrepancies between the ideal and simulated performances of betavoltaic batteries.Our work offers a promising approach for the design and optimization of high-output betavoltaic nuclear batteries with a unique 3D design,and serves as a valuable reference for future device fabrication.展开更多
文摘An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.
基金supported by Anhui Provincial Key R&D Program(No.202104g0102007)Jiangxi Provincial Department of Education Science and Technology Research Youth Project(GJJ200763)+3 种基金Hubei Provincial Natural Science Foundation of China(No.2022CFB575)Hefei Municipal Natural Science Foundation(No.2022011)Ministry of Education Industry-Education Cooperation Project(No.202102647014)Science Island Graduate Innovation and Entrepreneurship Fund Project(No.KY-2022-SC-04)。
文摘Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D structures have been proposed as a potential solution.Accordingly,this paper introduces a novel 3D^(63)Ni–SiC-based P^(+)PNN^(+)structure with a multi-groove design,avoiding the need for PN junctions on the inner surface,and thus reducing leakage current and power losses.Monte Carlo simulations were performed considering the fully coupled physical model to extend the electron–hole pair generation rate to a 3D structure,enabling the efficient design and development of betavoltaic batteries with complex 3D structures.As a result,the proposed model produces the significantly higher maximum output power density of 19.74μW/cm^(2) and corresponding short-circuit current,open-circuit voltage,and conversion efficiency of 8.57μA/cm^(2),2.45 V,and4.58%,respectively,compared with conventional planar batteries.From analysis of the carrier transport and collection characteristics using the COMSOL Multiphysics code,we provide deep insights regarding power increase,and elucidate the discrepancies between the ideal and simulated performances of betavoltaic batteries.Our work offers a promising approach for the design and optimization of high-output betavoltaic nuclear batteries with a unique 3D design,and serves as a valuable reference for future device fabrication.