The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers...The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers have a higher differential gain because of the step-like state density, and that the gain saturates at higher carrier densities because of the constant state density of the lowest subband. It is shown that simple logarithmic gain-carrier density is more accurate than the traditional linearized form for a QW laser.展开更多
We present a generic approximate graphical method for determining the equilibrium Fermi level and majority carrier density of a semiconductor with multiple donors and multiple acceptors compensating each other. Simple...We present a generic approximate graphical method for determining the equilibrium Fermi level and majority carrier density of a semiconductor with multiple donors and multiple acceptors compensating each other. Simple and easy-to-follow procedures of the graphical method are described.By graphically plotting two wrapping step functions facing each other,one for the positive hole-ionized donor and one for the negative electron-ionized acceptor,we have the crossing point that renders the Fermi level and majority carrier density.Using the graphical method,new equations are derived,such as the carrier compensation proportional to N;/N;,not the widely quoted N;-N;.Visual insight is offered to view not only the result of graphic determination of Fermi level and majority carrier density but also the dominant and critical pair of donors and acceptors in compensation.The graphical method presented in this work will help to guide the design,adjustment,and improvement of the multiply doped semiconductors.Comparison of this approximate graphical method with previous work on compensation,and with some experimental results,is made.Future work in the field is proposed.展开更多
Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency ha...Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.展开更多
For semiconductors with localized intrinsic/impurity defects, intentionally doped or unintentionally incorporated, that have multiple transition energy levels among charge states, the general formulation of the local ...For semiconductors with localized intrinsic/impurity defects, intentionally doped or unintentionally incorporated, that have multiple transition energy levels among charge states, the general formulation of the local charge neutrality condition is given for the determination of the Fermi level and the majority carrier density. A graphical method is used to illustrate the solution of the problem. Relations among the transition energy levels of the multi-level defect are derived using the graphical method. Numerical examples are given for p-doping of the CdTe thin film used in solar panels and semi-insulating Si to illustrate the relevance and importance of the issues discussed in this work.展开更多
Semiconductors typically exhibit long-wavelength LSPR absorption in the infrared region due to lower carrier density.Tuning the carrier density of semiconductors and blue-shifting their LSPR absorption to the visible ...Semiconductors typically exhibit long-wavelength LSPR absorption in the infrared region due to lower carrier density.Tuning the carrier density of semiconductors and blue-shifting their LSPR absorption to the visible and near-infrared region has always been a great challenge.Herein,we discussed how the controllable carrier of(Ag)x(MoO_(3))y composite influences the LSPR based on SERS test and UVeViseNIR absorption spectra.We were surprised to find that the LSPR absorption wavelength can be easily tuned from 950 to 735 nm by changing the sputtering power of MoO_(3)of the(Ag)x(MoO_(3))_(y)composite.This shows that LSPR can be precisely adjusted by increasing the semiconductor content and even the carrier density.In addition,the carrier density was measured by Hall effect to investigate the SERS intensity change caused by electromagnetic(EM)enhancement,and obtain the relationship between the two.The findings of this work provide an idea for tunable LSPR and the research of EM contributions to SERS.展开更多
Antimony selenide(Sb_(2)Se_(3))has drawn tremendous research attentions in recent years as an environment-friendly and cost-efficient photovoltaic material.However,the intrinsic low carrier density and electrical cond...Antimony selenide(Sb_(2)Se_(3))has drawn tremendous research attentions in recent years as an environment-friendly and cost-efficient photovoltaic material.However,the intrinsic low carrier density and electrical conductivity limited its scope of applications.In this work,an effective ion doping strategy was implemented to improve the electrical and photoelectrical performances of Sb_(2)Se_(3) thin films.The Sn-doped and I-doped Sb_(2)Se_(3) thin films with controllable chemical composition can be prepared by magnetron sputtering combined with post-selenization treatment based on homemade plasma sintered targets.As a result,the Sn-doped Sb_(2)Se_(3) thin film exhibited a great increase in carrier density by several orders of magnitude,by contrast,a less increase with one order of magnitude was achieved for the Idoped Sb_(2)Se_(3) thin film.Additionally,such cation or anion doping could simultaneously modify the conduction type of Sb_(2)Se_(3),enabling the first fabrication of a substrate structured Sb_(2)Se_(3)-based quasihomojunction thin film solar cell with configuration of Mo/Sb_(2)Se_(3)-Sn/Sb_(2)Se_(3)-I/ITO/Ag.The obtained power conversion efficiency exceeding 2%undoubtedly demonstrated its attractive photovoltaic application potential and further investigation necessity.展开更多
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN...It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.展开更多
In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon so...In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon solar cell under polychromatic illumination in a dynamic state. Starting from the Boltzmann equation of semiconductors, the author establishes the general equation of particle transport. Assumptions made on the latter allow it to give the equation of distribution of minority carriers in a general way in its case to be studied. This dimensioned distribution equation reveals the parameters of influences on the distribution of carriers. It obtains a partial derivative equation for the carrier distribution function. The boundary conditions are then discretized to order one and then to order two. By considering boundary conditions and the nature of the carriers, the author numerically resolves the discretized general equation by assessing the influence of the nature of the boundary conditions and truncation errors and the influence of the discretization step on the density of the charge carriers by setting certain parameters and varying others. The work ends with a conclusion and logical follow-up to this work.展开更多
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The...Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.展开更多
The main goal of this paper is to focus on the investigation of interaction between a magnetic field and elastic materials with microstructure, whose microelements possess microtemperatures with photothermal excitatio...The main goal of this paper is to focus on the investigation of interaction between a magnetic field and elastic materials with microstructure, whose microelements possess microtemperatures with photothermal excitation. The elastic-photothermal prob- lem in one-dimension is solved by introducing photothermal excitation at the free surface of a semi-infinite semiconducting medium (semiconductor rod). The integral transform technique is used to solve the governing equations of the problem under the effect of the microtemperature field. The analytical expressions for some physical quantities in the physical domain are obtained with the heating boundary surface and free traction. The numerical inversion technique is used to obtain the resulting quantities in the physical domain. The obtained numerical results with some comparisons are discussed and shown graphically.展开更多
A well-established method is highly desirable for growing topological insulator thin films with low carrier density on a wafer-level scale. Here, we present a simple, scalable method based on magnetron sputtering to o...A well-established method is highly desirable for growing topological insulator thin films with low carrier density on a wafer-level scale. Here, we present a simple, scalable method based on magnetron sputtering to obtain high-quality Bi_(2) Te_(3) films with the carrier density down to 4.0 × 10^(13) cm^(-2). In contrast to the most-used method of high substrate temperature growth, we firstly sputtered Bi_(2) Te_(3) thin films at room temperature and then applied post-annealing. It enables the growth of highly-oriented Bi_(2) Te_(3) thin films with larger grain size and smoother interface. The results of electrical transport show that it has a lower carrier density as well as a larger coherent length(~ 228 nm, 2 K). Our studies pave the way toward large-scale, cost-effective production of Bi_(2) Te_(3) thin films to be integrated with other materials in wafer-level scale for electronic and spintronic applications.展开更多
Using a set of traveling wave rate equations,a superluminescent diode with a low facet reflectivity is studied. Analytical expressions of the distributions of carrier density,forward- and backward-propagating photon d...Using a set of traveling wave rate equations,a superluminescent diode with a low facet reflectivity is studied. Analytical expressions of the distributions of carrier density,forward- and backward-propagating photon densities,and gain are obtained at different facet reflectivities.It is shown that the high nonuniform carrier distribution is evident in the case of low facet reflectivity.The results can serve as useful guides in understanding emission mechanism of superluminescent diodes.展开更多
The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitan...The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitance Simulator) whose mathematical model is based on solving the equations of Poisson and continuity of electrons and holes. An electrical conversion efficiency of 23.58% is obtained by optimizing the mobility of the electrons (100 cm2/Vs), that of the holes (25 cm2/Vs), the density of electrons (1015 cm-3), the density of the effective states in the conduction band (7.9 × 1017 cm-3) and the electronic affinity (3.85 eV) of the CdTe absorbent layer.展开更多
A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscil...A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.展开更多
Intrinsic carrier transport properties of single-walled carbon nanotubes have been probed by two parallel methods on the same individual tubes: The contactless dielectric force microscopy (DFM) technique and the co...Intrinsic carrier transport properties of single-walled carbon nanotubes have been probed by two parallel methods on the same individual tubes: The contactless dielectric force microscopy (DFM) technique and the conventional field-effect transistor (FET) method. The dielectric responses of SWNTs are strongly correlated with electronic transport of the corresponding FETs. The DC bias voltage in DFM plays a role analogous to the gate voltage in FET. A microscopic model based on the general continuity equation and numerical simulation is built to reveal the link between intrinsic properties such as carrier concentration and mobility and the macroscopic observable, i.e. dielectric responses, in DFM experiments. Local transport barriers in nanotubes, which influence the device transport behaviors, are also detected with nanometer scale resolution.展开更多
The oxygen adsorption can drastically alter the electronic properties of the two-dimensional(2D)materials,which is usually dificult to be removed.In this work,we report the ultraviolet(UV)ilumination induced desorptio...The oxygen adsorption can drastically alter the electronic properties of the two-dimensional(2D)materials,which is usually dificult to be removed.In this work,we report the ultraviolet(UV)ilumination induced desorption of the O2 molecules from the monolayer MoS2 surface by using the atmosphere dependent transport measurement,Kelvin probe microscopy,photoluminescence spectroscopy and X-ray photoelectron spectroscopy.Obvious increasing of the conductivity,rising of the Fermi level,and red shift of the photoluminescence peaks of the MoS2 were observed after the UV ilumination in vacuum,indicating the elimination of the depletion effect from the oxygen adsorption.Such parameter changes can be reversibly recovered by the subsequent O2 exposure.Furthermore,obvious decreasing of the oxygen concentration after the UV ilumination was also observed by X-ray photoelectron spectroscopy.Thus the UV induced O2 photodesorption effect is evidenced.The photo-excited charge transfer mechanism is proposed to account for the photodesorption effect.These results provide a nondestructive way to clean the MoS2 surface and manipulate the performance of the MoS2 based devices.展开更多
Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a the...Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a thermionic-field-diffusion model that is used to the analyze the performance of an abrupt HBT with a heavydoped base, the conclusion is made that, although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density, the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs. In addition, the BGN effect changes the bias voltage for the onset of Kirk effects.展开更多
Two-dimensional(2D)materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage.However,up to now,reversible phase transitions in 2D materials t...Two-dimensional(2D)materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage.However,up to now,reversible phase transitions in 2D materials that can be driven by facile nondestructive methods,such as temperature,are still rare.Here,we introduce ultrathin Cu_(9)S_(5)crystals grown by chemical vapor deposition(CVD)as an exemplary case.For the first time,their basic electrical properties were investigated based on Hall measurements,showing a record high hole carrier density of~1022 cm^(-3) among 2D semiconductors.Besides,an unusual and repeatable conductivity switching behavior at~250 K were readily observed in a wide thickness range of CVD-grown Cu_(9)S_(5)(down to 2 unit-cells).Confirmed by in-situ selected area electron diffraction,this unusual behavior can be ascribed to the reversible structural phase transition between the room-temperature hexagonalβphase and low-temperatureβ’phase with a superstructure.Our work provides new insights to understand the physical properties of ultrathin Cu_(9)S_(5)crystals,and brings new blood to the 2D materials family with reversible phase transitions.展开更多
Hole carrier mediated magnetization in Cu-doped GaN is investigated by using the first-principles calculations. By studying the sp-d interaction and the direct exchange interaction among the dopants, we obtain an equa...Hole carrier mediated magnetization in Cu-doped GaN is investigated by using the first-principles calculations. By studying the sp-d interaction and the direct exchange interaction among the dopants, we obtain an equation to determine the spontaneous magnetization as a function of the Cu dopant concentration and the hole carrier density. It is demonstrated that nonmagnetic Cu doped GaN can be of room-temperature ferromagnetism. The system's Curie temperature Tc can reach about 345 K with Cu concentration of 1.0% and hole carrier density of 5.0×10^19 cm-3. The results are in good agreement with experimental observations and indicate that ferromagnetism in this systems is tunable by controlling the Cu concentration and the hole carrier density.展开更多
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moment...Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.展开更多
文摘The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers have a higher differential gain because of the step-like state density, and that the gain saturates at higher carrier densities because of the constant state density of the lowest subband. It is shown that simple logarithmic gain-carrier density is more accurate than the traditional linearized form for a QW laser.
文摘We present a generic approximate graphical method for determining the equilibrium Fermi level and majority carrier density of a semiconductor with multiple donors and multiple acceptors compensating each other. Simple and easy-to-follow procedures of the graphical method are described.By graphically plotting two wrapping step functions facing each other,one for the positive hole-ionized donor and one for the negative electron-ionized acceptor,we have the crossing point that renders the Fermi level and majority carrier density.Using the graphical method,new equations are derived,such as the carrier compensation proportional to N;/N;,not the widely quoted N;-N;.Visual insight is offered to view not only the result of graphic determination of Fermi level and majority carrier density but also the dominant and critical pair of donors and acceptors in compensation.The graphical method presented in this work will help to guide the design,adjustment,and improvement of the multiply doped semiconductors.Comparison of this approximate graphical method with previous work on compensation,and with some experimental results,is made.Future work in the field is proposed.
文摘Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.
文摘For semiconductors with localized intrinsic/impurity defects, intentionally doped or unintentionally incorporated, that have multiple transition energy levels among charge states, the general formulation of the local charge neutrality condition is given for the determination of the Fermi level and the majority carrier density. A graphical method is used to illustrate the solution of the problem. Relations among the transition energy levels of the multi-level defect are derived using the graphical method. Numerical examples are given for p-doping of the CdTe thin film used in solar panels and semi-insulating Si to illustrate the relevance and importance of the issues discussed in this work.
基金supported by the National Natural Science Foundation(Grant Nos.22011540378 and 21773080)of P.R.ChinaThe Development Program of the Science and Technology of Jilin Province(20190701003GH,20190201215jc and 20200404193yy).
文摘Semiconductors typically exhibit long-wavelength LSPR absorption in the infrared region due to lower carrier density.Tuning the carrier density of semiconductors and blue-shifting their LSPR absorption to the visible and near-infrared region has always been a great challenge.Herein,we discussed how the controllable carrier of(Ag)x(MoO_(3))y composite influences the LSPR based on SERS test and UVeViseNIR absorption spectra.We were surprised to find that the LSPR absorption wavelength can be easily tuned from 950 to 735 nm by changing the sputtering power of MoO_(3)of the(Ag)x(MoO_(3))_(y)composite.This shows that LSPR can be precisely adjusted by increasing the semiconductor content and even the carrier density.In addition,the carrier density was measured by Hall effect to investigate the SERS intensity change caused by electromagnetic(EM)enhancement,and obtain the relationship between the two.The findings of this work provide an idea for tunable LSPR and the research of EM contributions to SERS.
基金supported by Natural Science Foundation of Guangdong Province(2020A1515010805)ChinaNational Natural Science Foundation of China(No.62074102)+1 种基金Key Project of Department of Education of Guangdong Province(No.2018KZDXM059)ChinaScience and Technology plan project of Shenzhen(JCYJ20190808153409238)China.
文摘Antimony selenide(Sb_(2)Se_(3))has drawn tremendous research attentions in recent years as an environment-friendly and cost-efficient photovoltaic material.However,the intrinsic low carrier density and electrical conductivity limited its scope of applications.In this work,an effective ion doping strategy was implemented to improve the electrical and photoelectrical performances of Sb_(2)Se_(3) thin films.The Sn-doped and I-doped Sb_(2)Se_(3) thin films with controllable chemical composition can be prepared by magnetron sputtering combined with post-selenization treatment based on homemade plasma sintered targets.As a result,the Sn-doped Sb_(2)Se_(3) thin film exhibited a great increase in carrier density by several orders of magnitude,by contrast,a less increase with one order of magnitude was achieved for the Idoped Sb_(2)Se_(3) thin film.Additionally,such cation or anion doping could simultaneously modify the conduction type of Sb_(2)Se_(3),enabling the first fabrication of a substrate structured Sb_(2)Se_(3)-based quasihomojunction thin film solar cell with configuration of Mo/Sb_(2)Se_(3)-Sn/Sb_(2)Se_(3)-I/ITO/Ag.The obtained power conversion efficiency exceeding 2%undoubtedly demonstrated its attractive photovoltaic application potential and further investigation necessity.
文摘It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.
文摘In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon solar cell under polychromatic illumination in a dynamic state. Starting from the Boltzmann equation of semiconductors, the author establishes the general equation of particle transport. Assumptions made on the latter allow it to give the equation of distribution of minority carriers in a general way in its case to be studied. This dimensioned distribution equation reveals the parameters of influences on the distribution of carriers. It obtains a partial derivative equation for the carrier distribution function. The boundary conditions are then discretized to order one and then to order two. By considering boundary conditions and the nature of the carriers, the author numerically resolves the discretized general equation by assessing the influence of the nature of the boundary conditions and truncation errors and the influence of the discretization step on the density of the charge carriers by setting certain parameters and varying others. The work ends with a conclusion and logical follow-up to this work.
基金Project supported by the National Natural Science Foundation of China(Nos.11672223,11402187,and 51178390)the China Postdoctoral Science Foundation(No.2014M560762)the Fundamental Research Funds for the Central Universities of China(No.xjj2015131)
文摘Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.
文摘The main goal of this paper is to focus on the investigation of interaction between a magnetic field and elastic materials with microstructure, whose microelements possess microtemperatures with photothermal excitation. The elastic-photothermal prob- lem in one-dimension is solved by introducing photothermal excitation at the free surface of a semi-infinite semiconducting medium (semiconductor rod). The integral transform technique is used to solve the governing equations of the problem under the effect of the microtemperature field. The analytical expressions for some physical quantities in the physical domain are obtained with the heating boundary surface and free traction. The numerical inversion technique is used to obtain the resulting quantities in the physical domain. The obtained numerical results with some comparisons are discussed and shown graphically.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52072030, 52071025, and 51871018)the Beijing Outstanding Young Scientists Projects (Grant No. BJJWZYJH01201910005018)+2 种基金Beijing Natural Science Foundation,China (Grant No. Z180014)the Science and Technology Innovation Team Program of Foshan (Grant No. FSOAA-KJ919-4402-0087)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation。
文摘A well-established method is highly desirable for growing topological insulator thin films with low carrier density on a wafer-level scale. Here, we present a simple, scalable method based on magnetron sputtering to obtain high-quality Bi_(2) Te_(3) films with the carrier density down to 4.0 × 10^(13) cm^(-2). In contrast to the most-used method of high substrate temperature growth, we firstly sputtered Bi_(2) Te_(3) thin films at room temperature and then applied post-annealing. It enables the growth of highly-oriented Bi_(2) Te_(3) thin films with larger grain size and smoother interface. The results of electrical transport show that it has a lower carrier density as well as a larger coherent length(~ 228 nm, 2 K). Our studies pave the way toward large-scale, cost-effective production of Bi_(2) Te_(3) thin films to be integrated with other materials in wafer-level scale for electronic and spintronic applications.
文摘Using a set of traveling wave rate equations,a superluminescent diode with a low facet reflectivity is studied. Analytical expressions of the distributions of carrier density,forward- and backward-propagating photon densities,and gain are obtained at different facet reflectivities.It is shown that the high nonuniform carrier distribution is evident in the case of low facet reflectivity.The results can serve as useful guides in understanding emission mechanism of superluminescent diodes.
文摘The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitance Simulator) whose mathematical model is based on solving the equations of Poisson and continuity of electrons and holes. An electrical conversion efficiency of 23.58% is obtained by optimizing the mobility of the electrons (100 cm2/Vs), that of the holes (25 cm2/Vs), the density of electrons (1015 cm-3), the density of the effective states in the conduction band (7.9 × 1017 cm-3) and the electronic affinity (3.85 eV) of the CdTe absorbent layer.
基金Project(61106113)supported by the National Natural Science Foundation of China
文摘A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.
文摘Intrinsic carrier transport properties of single-walled carbon nanotubes have been probed by two parallel methods on the same individual tubes: The contactless dielectric force microscopy (DFM) technique and the conventional field-effect transistor (FET) method. The dielectric responses of SWNTs are strongly correlated with electronic transport of the corresponding FETs. The DC bias voltage in DFM plays a role analogous to the gate voltage in FET. A microscopic model based on the general continuity equation and numerical simulation is built to reveal the link between intrinsic properties such as carrier concentration and mobility and the macroscopic observable, i.e. dielectric responses, in DFM experiments. Local transport barriers in nanotubes, which influence the device transport behaviors, are also detected with nanometer scale resolution.
基金This work is supported by the National Natural Science Foundation of China(Nos.11074142 and 11021464)Collaborative Innovation Center of Weak Signal-Detecting Materials and Devices Integration of Anhui University(No.01001795-201601)+1 种基金Fundam ental Research Funds for the Central Universities(No.FRP-TP-18-076A1)the China Postdoctoral Science Foundation(No.2017M610857).
文摘The oxygen adsorption can drastically alter the electronic properties of the two-dimensional(2D)materials,which is usually dificult to be removed.In this work,we report the ultraviolet(UV)ilumination induced desorption of the O2 molecules from the monolayer MoS2 surface by using the atmosphere dependent transport measurement,Kelvin probe microscopy,photoluminescence spectroscopy and X-ray photoelectron spectroscopy.Obvious increasing of the conductivity,rising of the Fermi level,and red shift of the photoluminescence peaks of the MoS2 were observed after the UV ilumination in vacuum,indicating the elimination of the depletion effect from the oxygen adsorption.Such parameter changes can be reversibly recovered by the subsequent O2 exposure.Furthermore,obvious decreasing of the oxygen concentration after the UV ilumination was also observed by X-ray photoelectron spectroscopy.Thus the UV induced O2 photodesorption effect is evidenced.The photo-excited charge transfer mechanism is proposed to account for the photodesorption effect.These results provide a nondestructive way to clean the MoS2 surface and manipulate the performance of the MoS2 based devices.
基金supported by the State Key Development Program for Basic Research of China (No. 2003CB314901)
文摘Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a thermionic-field-diffusion model that is used to the analyze the performance of an abrupt HBT with a heavydoped base, the conclusion is made that, although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density, the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs. In addition, the BGN effect changes the bias voltage for the onset of Kirk effects.
基金J.X.W.acknowledges financial support from the National Natural Science Foundation of China(NSFC)(No.92064005)Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(No.SKL202211SIC)+6 种基金H.T.Y.acknowledges the support from the NSFC(Nos.51861145201,52072168,and 21733001)the National Key Research and Development Program of China(No.2018YFA0306200)J.W.H.acknowledges the support from the National Key Research and Development Program of China(No.2021YFA1202901)X.W.F.acknowledges financial support from the NSFC at grant(Nos.11974191 and 2217830)the National Key Research and Development Program of China at grant(No.2020YFA0309300)the Natural Science Foundation of Tianjin at grant(Nos.20JCZDJC00560 and 20JCJQJC00210)the 111 Project(No.B23045).
文摘Two-dimensional(2D)materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage.However,up to now,reversible phase transitions in 2D materials that can be driven by facile nondestructive methods,such as temperature,are still rare.Here,we introduce ultrathin Cu_(9)S_(5)crystals grown by chemical vapor deposition(CVD)as an exemplary case.For the first time,their basic electrical properties were investigated based on Hall measurements,showing a record high hole carrier density of~1022 cm^(-3) among 2D semiconductors.Besides,an unusual and repeatable conductivity switching behavior at~250 K were readily observed in a wide thickness range of CVD-grown Cu_(9)S_(5)(down to 2 unit-cells).Confirmed by in-situ selected area electron diffraction,this unusual behavior can be ascribed to the reversible structural phase transition between the room-temperature hexagonalβphase and low-temperatureβ’phase with a superstructure.Our work provides new insights to understand the physical properties of ultrathin Cu_(9)S_(5)crystals,and brings new blood to the 2D materials family with reversible phase transitions.
基金Supported by the National Basic Research Program of China (973 Program) (2007CB924902)the National Natural Science Foundation of China (10775053, 61076089)the "Shu Guang" Project of Shanghai Education Development Foundation (09SG24)
文摘Hole carrier mediated magnetization in Cu-doped GaN is investigated by using the first-principles calculations. By studying the sp-d interaction and the direct exchange interaction among the dopants, we obtain an equation to determine the spontaneous magnetization as a function of the Cu dopant concentration and the hole carrier density. It is demonstrated that nonmagnetic Cu doped GaN can be of room-temperature ferromagnetism. The system's Curie temperature Tc can reach about 345 K with Cu concentration of 1.0% and hole carrier density of 5.0×10^19 cm-3. The results are in good agreement with experimental observations and indicate that ferromagnetism in this systems is tunable by controlling the Cu concentration and the hole carrier density.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322101,51231004 and 51571128)the Ministry of Science and Technology of China(Grant No.2014AA032904)
文摘Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.