Monolayer molybdenum disulfide (MoS2) has attracted much attention because of the variety of potential applications. However, its controlled growth is still a great challenge. Here, we report a modified chemical vap...Monolayer molybdenum disulfide (MoS2) has attracted much attention because of the variety of potential applications. However, its controlled growth is still a great challenge. Here, we report a modified chemical vapor deposition method to grow monolayer MoS2. We observed that the quality of the MoS2 crystals could be greatly improved by tuning the carrier gas flow rate during the heating stage. This subtle modification prevents the uncontrollable reaction between the precursors, a critical factor for the growth of high-quality monolayer MoS2. Based on an optimized gas flow rate, the MoS2 coverage and flake size can be controlled by adjusting the growth time.展开更多
An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction...An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry.展开更多
A computer-assisted advanced simplex method is presented for the simultaneous optimization of multifactor (stationary phase loading, carrier gas dow rate and column temperature) for separation of ten compounds in gas ...A computer-assisted advanced simplex method is presented for the simultaneous optimization of multifactor (stationary phase loading, carrier gas dow rate and column temperature) for separation of ten compounds in gas chromatography. A three factors factorial design was used. The method was based on a special polynomial established from fifteen preliminary runs, using resolution as the selection criterion, with connection to a general simplex method. Excellent agreement is found between the predicted data and the experimental results, and most of experiments required in the general simplex method can be omitted.展开更多
文摘Monolayer molybdenum disulfide (MoS2) has attracted much attention because of the variety of potential applications. However, its controlled growth is still a great challenge. Here, we report a modified chemical vapor deposition method to grow monolayer MoS2. We observed that the quality of the MoS2 crystals could be greatly improved by tuning the carrier gas flow rate during the heating stage. This subtle modification prevents the uncontrollable reaction between the precursors, a critical factor for the growth of high-quality monolayer MoS2. Based on an optimized gas flow rate, the MoS2 coverage and flake size can be controlled by adjusting the growth time.
基金supported by the New Energy and Industrial Technology Development Organization of Japan(No.A0006)
文摘An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry.
基金supported by the National Natural Science Foundation of China.
文摘A computer-assisted advanced simplex method is presented for the simultaneous optimization of multifactor (stationary phase loading, carrier gas dow rate and column temperature) for separation of ten compounds in gas chromatography. A three factors factorial design was used. The method was based on a special polynomial established from fifteen preliminary runs, using resolution as the selection criterion, with connection to a general simplex method. Excellent agreement is found between the predicted data and the experimental results, and most of experiments required in the general simplex method can be omitted.