A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop ban...A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop bandwidth model respectively, are added in the presented tracking loop com- pared with the traditional carrier tracking loop based on the second-order frequency lock loop (FLL) assisting third-order phase lock loop (PLL) loop filter. And the optimization methods for the track- ing bandwidth and the carrier loop order are analyzed. The real-time estimation methods of the dy- namic parameters, the velocity, acceleration and jerk along the line of sight (LOS) between the sat- ellite and the receiver' s antenna, and the measurement parameters are discussed based on the pres- ented α-β-γ filter algorithm. A method is introduced to improve the filter' s dynamic response to meet high dynamic application by self-adjusted α-β-γ filter coefficient used in the tracking loop. The performance of three cases with different carrier tracking loop is compared by simulation.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modu...In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.展开更多
High dynamic conditions impose critical challenges on Global Navigation Satellite System(GNSS)receivers,leading to large tracking errors or even loss of tracking.Current methods that intend to improve receivers’adapt...High dynamic conditions impose critical challenges on Global Navigation Satellite System(GNSS)receivers,leading to large tracking errors or even loss of tracking.Current methods that intend to improve receivers’adaptability for high dynamics require either complicated structures or prior statistical information of noises.This paper proposes a high dynamics algorithm based on steepest ascent method that can circumvent the deficiencies of existing methods.First,the relationship between the error of carrier tracking and the maximum of Fast Fourier Transform(FFT)outputs is established,and a performance function based on the steepest ascent method is designed.It can keep stable in high dynamics.Second,a new carrier-tracking loop is constructed by deploying the performance function.When the variation of GPS receiver acceleration ranges from 10 g to 100 g,compared with the PLL that either loses lock or keeps tracking accuracy less than 33.89 Hz,the experimental results show that the proposed method can not only keep tracking,but also achieve tracking accuracy more than 2.77 Hz.展开更多
基金Supported by the Ministerial Level Foundation(B222006060)
文摘A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop bandwidth model respectively, are added in the presented tracking loop com- pared with the traditional carrier tracking loop based on the second-order frequency lock loop (FLL) assisting third-order phase lock loop (PLL) loop filter. And the optimization methods for the track- ing bandwidth and the carrier loop order are analyzed. The real-time estimation methods of the dy- namic parameters, the velocity, acceleration and jerk along the line of sight (LOS) between the sat- ellite and the receiver' s antenna, and the measurement parameters are discussed based on the pres- ented α-β-γ filter algorithm. A method is introduced to improve the filter' s dynamic response to meet high dynamic application by self-adjusted α-β-γ filter coefficient used in the tracking loop. The performance of three cases with different carrier tracking loop is compared by simulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金supported by the National Natural Science Foundation of China(11773060,11973074,U1831137,11703070 and 11803069)the National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.
基金funded by National Natural Science Foundation of China(Nos.61533008,61603181,61673208,61873125)。
文摘High dynamic conditions impose critical challenges on Global Navigation Satellite System(GNSS)receivers,leading to large tracking errors or even loss of tracking.Current methods that intend to improve receivers’adaptability for high dynamics require either complicated structures or prior statistical information of noises.This paper proposes a high dynamics algorithm based on steepest ascent method that can circumvent the deficiencies of existing methods.First,the relationship between the error of carrier tracking and the maximum of Fast Fourier Transform(FFT)outputs is established,and a performance function based on the steepest ascent method is designed.It can keep stable in high dynamics.Second,a new carrier-tracking loop is constructed by deploying the performance function.When the variation of GPS receiver acceleration ranges from 10 g to 100 g,compared with the PLL that either loses lock or keeps tracking accuracy less than 33.89 Hz,the experimental results show that the proposed method can not only keep tracking,but also achieve tracking accuracy more than 2.77 Hz.