This study aimed to explore the effect of fermented spent mushroom substrate(SMS) of Pleurotus eryngii as a basic material on rice seedling-raising substrate. The physical and chemical indices of the SMS indicated tha...This study aimed to explore the effect of fermented spent mushroom substrate(SMS) of Pleurotus eryngii as a basic material on rice seedling-raising substrate. The physical and chemical indices of the SMS indicated that the fermented SMS was fully composted and was very suitable for preparing rice seedling-raising substrate. The fermented SMS effectively regulated the bulk density, total porosity, aeration porosity and water-holding porosity of rice seedling-raising substrate. With the increased addition amount of fermented SMS, the bulk density of rice seedling-raising substrate was decreased, but the total porosity, aeration porosity and water-holding porosity were increased. Compared with those in the substrates of 100% soil and 100% SMS,the height, chlorophyll content, 100-shoot dry weight, 100-root dry weight, root activity, nitrogen content, phosphorus content and potassium content of rice seedlings in the substrate composed of spent mushroom substrate of P. eryngii and soil were higher.The quality of rice seedlings in the substrate composed of 20% soil and 80% SMS was best, followed by that in the substrate composed of 30% soil and 70% SMS.展开更多
Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(...Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303080)Hubei Province Science and Technology Support Program+1 种基金China(2015BBA199)Project of Hubei Agricultural Science and Technology Innovation Center(2016-620-007-001)
文摘This study aimed to explore the effect of fermented spent mushroom substrate(SMS) of Pleurotus eryngii as a basic material on rice seedling-raising substrate. The physical and chemical indices of the SMS indicated that the fermented SMS was fully composted and was very suitable for preparing rice seedling-raising substrate. The fermented SMS effectively regulated the bulk density, total porosity, aeration porosity and water-holding porosity of rice seedling-raising substrate. With the increased addition amount of fermented SMS, the bulk density of rice seedling-raising substrate was decreased, but the total porosity, aeration porosity and water-holding porosity were increased. Compared with those in the substrates of 100% soil and 100% SMS,the height, chlorophyll content, 100-shoot dry weight, 100-root dry weight, root activity, nitrogen content, phosphorus content and potassium content of rice seedlings in the substrate composed of spent mushroom substrate of P. eryngii and soil were higher.The quality of rice seedlings in the substrate composed of 20% soil and 80% SMS was best, followed by that in the substrate composed of 30% soil and 70% SMS.
基金This study was supported by the State Key Laboratory of Petroleum and Petrochemical Contaminant Control and Treatment,the Open Project(Authorization:PPC2019021)the Research and Promotion Project of Key Technologies for Safety and Environmental Protection of CNPC(2017D-4013)the PetroChina Technology Innovation Fund Research Project(Authorization:2017D-5007-0601,2018D-5007-0605).
文摘Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications.