With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These...A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.展开更多
We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft a...We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft and helicopters.Second,we look into the navigation and guidance system and the flight control methods for current different aircraft.Finally,we draw several conclusions of the development prospects for aircraft carrier landing,including the precision landing control techniques,precision approach and landing guidance techniques,and adaptive,reconfigurable and intelligent flight control techniques.展开更多
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp...Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.展开更多
Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present a...Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.展开更多
In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six...In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.展开更多
In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult pro...In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult process including four stages which are buffering,tensioning,releasing and taxiing is taken into consideration and the body dynamics of the off-center catapult during each stage is analyzed.The catapult launch dynamic differences between the conditions only considering taxiing and that considering four stages are compared,and the effects of the different initial off center distances considering four stages on the attitude,landing gear load and acceleration of the carrier based aircraft during catapult launch are discussed.The results show that only considering taxiing may underestimate the dynamics of the carrier-based aircraft substantially.When taking four stages into consideration,the initial off-center distance has small influence on the aircraft dynamic characteristics during buffering and tensioning but has larger influence on that during releasing and taxiing.The increase of the off-center distance will cause the enhancement of the aircraft rolling and yawing,which may lead to the load difference between the left and right landing gears and the increase of the aircraft lateral acceleration.The establishment and simulation of the catapult launch multi body dynamic model founded on buffering,tensioning,releasing and taxiing provide reference for the carrier-based aircraft design and analysis of the catapult launch dynamics.展开更多
In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's...In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts.展开更多
A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex configuration is presented.This method,which considers the effects of high temperature chemical non-equilibrium and the he...A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex configuration is presented.This method,which considers the effects of high temperature chemical non-equilibrium and the heat transfer process in thermal protection structure,is based on the combination of the inviscid outerflow solution and the engineering method,where the Euler solver provides the flow parameters on boundary layer edge for engineering method in aerodynamic heating calculation.A high efficient interpolation technique,which can be applied to the fast computation of longtime aerodynamic heating for hypersonic aircraft,is developed for flying trajectory.In this paper,three hypersonic test cases are calculated,and the heat flux and temperature distribution of thermo-protection system are shown.The numerical results show the high efficiency of the developed method and the validation of thermal characteristics analysis on hypersonic aerodynamic heating.展开更多
In order to capture and storage video data real-time for carrier-based photoelectric warning system, An acquisition and storage system based on FPGA is designed. To complete the asynchronous interface timing of the ca...In order to capture and storage video data real-time for carrier-based photoelectric warning system, An acquisition and storage system based on FPGA is designed. To complete the asynchronous interface timing of the camera and the storage system, the video data which come from infrared camera and visible light camera is stored to FIFO by FPGA, and then four SDRAM as cache and ping-pong operation cache-data storage to the CF card, this structure not only takes advantage of high-speed reading and writing skills of CF card, but also to ensure the integrity of the video data. In the final experiment proved that the system can be effectively applied to ships the photoelectric warning scanning system, its performance fully meet the needs of practical application.展开更多
Configuration evaluation is a key technology to be considered in the design of multiple aircrafts formation(MAF)configurations with high dynamic properties in engineering applications.This paper deduces the relationsh...Configuration evaluation is a key technology to be considered in the design of multiple aircrafts formation(MAF)configurations with high dynamic properties in engineering applications.This paper deduces the relationship between relative velocity,dynamic safety distance and dynamic adjacent distance of formation members,then divides the formation states into collision-state and matching-state.Meanwhile,probability models are constructed based on the binary normal distribution of relative distance and relative velocity.Moreover,configuration evaluation strategies are studied by quantitatively analyzing the denseness and the basic capabilities according to the MAF collision-state probability and the MAF matching-state probability,respectively.The scale of MAF is grouped into 5 levels,and previous lattice-type structures are extended into four degrees by taking the relative velocities into account to instruct the configuration design under complex task conditions.Finally,hardware-in-loop(HIL)simulation and outfield flight test results are presented to verify the feasibility of these evaluation strategies.展开更多
Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric ...Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric materials further promotes electronic components confinement, resulting in a significant increase of embedded power densities. In the particular case of future hybrid propulsion aircrafts, electrical power that intended to supply reactors would be converted through power electronics components mounted on power busbars and insulated by solid dielectrics materials. These dielectrics materials have to respond to various electrical constraints of use (HVDC), in spite of environment change of aircraft parameters such as low pressure, temperature and thermal cycles, humidity... Unfortunately, partial discharges phenomenon is the most problem within electrical insulation system (EIS). Based on a topological model of power busbars designed for power converters dedicated to hybrid aircraft, partial discharge studies were conducted by simulation in various charging conditions of a PTFE insulator. Simulation results, which focus on electric field thresholds criteria of partial discharge inception voltage in air, reveal a net sensitivity of a space charge accumulation and distribution on dielectrics behaviour even for low space charge density, depending on their location in dielectrics. Compared to the behaviour observed with implanted homocharges, when by increasing homocharges density from 0.5 C/m3 to 2 C/m3 we observe a decrease of electric field by 450%, simulation results show a highest risk of partial discharge inception when heterocharges are accumulated inside dielectrics. Their accumulation increases the electric field in triple points beyond electric field thresholds of partial discharge inception in air. The simulated electric field reaching 22 kV/mm with only 2 C/m3 of heterocharges density accumulated in dielectric/busbars interfaces.展开更多
Standards must go ahead of the rest in the development of civil aircrafts.They are the most prominent source of technical data for the design,manufacturing and security of civil aircrafts in an internationalized way,p...Standards must go ahead of the rest in the development of civil aircrafts.They are the most prominent source of technical data for the design,manufacturing and security of civil aircrafts in an internationalized way,playing an essential role in the successful projects on civil aircraft development jointly carried out by China and other countries.展开更多
This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by t...This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft....We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft. This test was designed to evaluate the potential for asbestos exposure to mechanics and others who remove asbestos-containing engine gaskets from reciprocating style aircraft engines. Utilized in this test was an air cooled, horizontally opposed, aviation gasoline burning engine, assembled during 1986 and operated intermittently up into 2015, having accumulated 1680 hours run time. Nearly 75% of the asbestos-containing gaskets installed during 1986 were still in place at the time of testing. Chrysotile asbestos contents of such gaskets ranged from 55% to 60% by area, for those of sheet style and 5% by area, for the spiral wound metal/asbestos style. Despite the levels of effort required to effect gasket removals, the professional aircraft mechanic was not exposed to airborne asbestos fibers at the lower limits of sampling and analytical detection achieved;all of which were substantially less than the current Occupational Safety and Health Administration Permissible Exposure Limits for asbestos. The results of this testing indicate an absence of gasket related asbestos exposure risk to mechanics who work with light aircraft engines, including those having asbestos-containing gaskets. These results are consistent with the findings of Mlyarek and Van Orden who studied the asbestos exposure risk occasioned during overhaul of larger radial style reciprocating aircraft engines [1].展开更多
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate...The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.展开更多
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
文摘A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223)the Jiangsu Six Peak of Talents Program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA52009)the Fundamental Research Funds for the Central Universities(Nos.NS2017015,NJ20170005).
文摘We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft and helicopters.Second,we look into the navigation and guidance system and the flight control methods for current different aircraft.Finally,we draw several conclusions of the development prospects for aircraft carrier landing,including the precision landing control techniques,precision approach and landing guidance techniques,and adaptive,reconfigurable and intelligent flight control techniques.
基金supported by the National Natural Science Foundation of China(Nos.5130519811372129)
文摘Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223,61673209,61533008)the Jiangsu Six Peak of Talents program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(Nos.NJ20160026,NS2017015)
文摘Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.
基金Supported by the National Natural Science Foundation of China(51075203,51105197)the Research Funding of Nanjing University of Aeronautics and Astronautics(NS2010023)
文摘In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.
文摘In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult process including four stages which are buffering,tensioning,releasing and taxiing is taken into consideration and the body dynamics of the off-center catapult during each stage is analyzed.The catapult launch dynamic differences between the conditions only considering taxiing and that considering four stages are compared,and the effects of the different initial off center distances considering four stages on the attitude,landing gear load and acceleration of the carrier based aircraft during catapult launch are discussed.The results show that only considering taxiing may underestimate the dynamics of the carrier-based aircraft substantially.When taking four stages into consideration,the initial off-center distance has small influence on the aircraft dynamic characteristics during buffering and tensioning but has larger influence on that during releasing and taxiing.The increase of the off-center distance will cause the enhancement of the aircraft rolling and yawing,which may lead to the load difference between the left and right landing gears and the increase of the aircraft lateral acceleration.The establishment and simulation of the catapult launch multi body dynamic model founded on buffering,tensioning,releasing and taxiing provide reference for the carrier-based aircraft design and analysis of the catapult launch dynamics.
基金supported by National Astronautic Foundation of China
文摘In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts.
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
文摘A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex configuration is presented.This method,which considers the effects of high temperature chemical non-equilibrium and the heat transfer process in thermal protection structure,is based on the combination of the inviscid outerflow solution and the engineering method,where the Euler solver provides the flow parameters on boundary layer edge for engineering method in aerodynamic heating calculation.A high efficient interpolation technique,which can be applied to the fast computation of longtime aerodynamic heating for hypersonic aircraft,is developed for flying trajectory.In this paper,three hypersonic test cases are calculated,and the heat flux and temperature distribution of thermo-protection system are shown.The numerical results show the high efficiency of the developed method and the validation of thermal characteristics analysis on hypersonic aerodynamic heating.
文摘In order to capture and storage video data real-time for carrier-based photoelectric warning system, An acquisition and storage system based on FPGA is designed. To complete the asynchronous interface timing of the camera and the storage system, the video data which come from infrared camera and visible light camera is stored to FIFO by FPGA, and then four SDRAM as cache and ping-pong operation cache-data storage to the CF card, this structure not only takes advantage of high-speed reading and writing skills of CF card, but also to ensure the integrity of the video data. In the final experiment proved that the system can be effectively applied to ships the photoelectric warning scanning system, its performance fully meet the needs of practical application.
基金supported by the Industrial Technology Development Program(B1120131046)。
文摘Configuration evaluation is a key technology to be considered in the design of multiple aircrafts formation(MAF)configurations with high dynamic properties in engineering applications.This paper deduces the relationship between relative velocity,dynamic safety distance and dynamic adjacent distance of formation members,then divides the formation states into collision-state and matching-state.Meanwhile,probability models are constructed based on the binary normal distribution of relative distance and relative velocity.Moreover,configuration evaluation strategies are studied by quantitatively analyzing the denseness and the basic capabilities according to the MAF collision-state probability and the MAF matching-state probability,respectively.The scale of MAF is grouped into 5 levels,and previous lattice-type structures are extended into four degrees by taking the relative velocities into account to instruct the configuration design under complex task conditions.Finally,hardware-in-loop(HIL)simulation and outfield flight test results are presented to verify the feasibility of these evaluation strategies.
文摘Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric materials further promotes electronic components confinement, resulting in a significant increase of embedded power densities. In the particular case of future hybrid propulsion aircrafts, electrical power that intended to supply reactors would be converted through power electronics components mounted on power busbars and insulated by solid dielectrics materials. These dielectrics materials have to respond to various electrical constraints of use (HVDC), in spite of environment change of aircraft parameters such as low pressure, temperature and thermal cycles, humidity... Unfortunately, partial discharges phenomenon is the most problem within electrical insulation system (EIS). Based on a topological model of power busbars designed for power converters dedicated to hybrid aircraft, partial discharge studies were conducted by simulation in various charging conditions of a PTFE insulator. Simulation results, which focus on electric field thresholds criteria of partial discharge inception voltage in air, reveal a net sensitivity of a space charge accumulation and distribution on dielectrics behaviour even for low space charge density, depending on their location in dielectrics. Compared to the behaviour observed with implanted homocharges, when by increasing homocharges density from 0.5 C/m3 to 2 C/m3 we observe a decrease of electric field by 450%, simulation results show a highest risk of partial discharge inception when heterocharges are accumulated inside dielectrics. Their accumulation increases the electric field in triple points beyond electric field thresholds of partial discharge inception in air. The simulated electric field reaching 22 kV/mm with only 2 C/m3 of heterocharges density accumulated in dielectric/busbars interfaces.
文摘Standards must go ahead of the rest in the development of civil aircrafts.They are the most prominent source of technical data for the design,manufacturing and security of civil aircrafts in an internationalized way,playing an essential role in the successful projects on civil aircraft development jointly carried out by China and other countries.
文摘This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
文摘We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft. This test was designed to evaluate the potential for asbestos exposure to mechanics and others who remove asbestos-containing engine gaskets from reciprocating style aircraft engines. Utilized in this test was an air cooled, horizontally opposed, aviation gasoline burning engine, assembled during 1986 and operated intermittently up into 2015, having accumulated 1680 hours run time. Nearly 75% of the asbestos-containing gaskets installed during 1986 were still in place at the time of testing. Chrysotile asbestos contents of such gaskets ranged from 55% to 60% by area, for those of sheet style and 5% by area, for the spiral wound metal/asbestos style. Despite the levels of effort required to effect gasket removals, the professional aircraft mechanic was not exposed to airborne asbestos fibers at the lower limits of sampling and analytical detection achieved;all of which were substantially less than the current Occupational Safety and Health Administration Permissible Exposure Limits for asbestos. The results of this testing indicate an absence of gasket related asbestos exposure risk to mechanics who work with light aircraft engines, including those having asbestos-containing gaskets. These results are consistent with the findings of Mlyarek and Van Orden who studied the asbestos exposure risk occasioned during overhaul of larger radial style reciprocating aircraft engines [1].
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
基金the Study on the Impact of the Construction and Development of Southwest Plateau Airport on the Ecological Environment(CZKY2023032).
文摘The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.