This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The ...This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.展开更多
The checkered history of China’s diplomacy since 1949 shows that people-to-people diplomacy has played a unique role–supplementing government-to-government diplomacy and even going before it sometimes.Since the begi...The checkered history of China’s diplomacy since 1949 shows that people-to-people diplomacy has played a unique role–supplementing government-to-government diplomacy and even going before it sometimes.Since the beginning of the reform and opening up,people-to-people diplomacy has prospered in China,emerging as an essential part of the country’s diplomacy as a whole.China is now entering展开更多
为提高农机装备传动齿轮于润滑条件恶劣、变速、重载工况下的抗胶合承载性能,该研究将表面涂层强化技术应用于啮合齿面。首先,基于齿轮啮合原理、摩擦学、热力学等理论,建立涂层与齿轮接触特性、胶合承载能力关系数学模型,分析不同膜基...为提高农机装备传动齿轮于润滑条件恶劣、变速、重载工况下的抗胶合承载性能,该研究将表面涂层强化技术应用于啮合齿面。首先,基于齿轮啮合原理、摩擦学、热力学等理论,建立涂层与齿轮接触特性、胶合承载能力关系数学模型,分析不同膜基弹性模量比下系统应力场的分布特点,阐明齿面摩擦系数对油膜厚度、瞬时接触温度的影响规律,为择取齿面抗胶合涂层提供理论参考。由此进一步对标准钢球表面分别沉积含钨ta-C和a-C:H碳膜,通过四球法评价涂层材料摩擦学性能,并在FZG(Forschungsstelle für Zahnräder und Getriebesysteme)传动试验台上对两种涂层齿轮进行耐胶合试验。结果表明:与无涂层齿轮相比,碳膜摩擦副跑合性更好,其中a-C:H涂层的sp^(2) C-C键含量高于ta-C,具有更低的摩擦系数(0.055~0.058);ta-C涂层齿轮抗胶合承载能力提高了2个FZG载荷级,a-C:H涂层齿轮至少提升了4个载荷级;ta-C齿面展现为涂层剥落后的磨粒磨损和黏着磨损;且无涂层齿面与ta-C齿面均显示出热胶合与微点蚀损伤竞争性关系,并兼存齿面塑性变形;而a-C:H涂层主要表现为常规性疲劳磨损,在齿轮上适用性较佳。研究结果可为涂层强化技术在高性能农机装备齿轮乃至服役工况苛刻的其他传动系统应用奠定基础。展开更多
文摘This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.
文摘The checkered history of China’s diplomacy since 1949 shows that people-to-people diplomacy has played a unique role–supplementing government-to-government diplomacy and even going before it sometimes.Since the beginning of the reform and opening up,people-to-people diplomacy has prospered in China,emerging as an essential part of the country’s diplomacy as a whole.China is now entering
文摘为提高农机装备传动齿轮于润滑条件恶劣、变速、重载工况下的抗胶合承载性能,该研究将表面涂层强化技术应用于啮合齿面。首先,基于齿轮啮合原理、摩擦学、热力学等理论,建立涂层与齿轮接触特性、胶合承载能力关系数学模型,分析不同膜基弹性模量比下系统应力场的分布特点,阐明齿面摩擦系数对油膜厚度、瞬时接触温度的影响规律,为择取齿面抗胶合涂层提供理论参考。由此进一步对标准钢球表面分别沉积含钨ta-C和a-C:H碳膜,通过四球法评价涂层材料摩擦学性能,并在FZG(Forschungsstelle für Zahnräder und Getriebesysteme)传动试验台上对两种涂层齿轮进行耐胶合试验。结果表明:与无涂层齿轮相比,碳膜摩擦副跑合性更好,其中a-C:H涂层的sp^(2) C-C键含量高于ta-C,具有更低的摩擦系数(0.055~0.058);ta-C涂层齿轮抗胶合承载能力提高了2个FZG载荷级,a-C:H涂层齿轮至少提升了4个载荷级;ta-C齿面展现为涂层剥落后的磨粒磨损和黏着磨损;且无涂层齿面与ta-C齿面均显示出热胶合与微点蚀损伤竞争性关系,并兼存齿面塑性变形;而a-C:H涂层主要表现为常规性疲劳磨损,在齿轮上适用性较佳。研究结果可为涂层强化技术在高性能农机装备齿轮乃至服役工况苛刻的其他传动系统应用奠定基础。