This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertoo...This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertook a ter-ritorial diagnosis based on actor statements,using 28 semi-structured interviews across Occitania.This diagnosis was enriched by graphic modelling,which enabled the spatialization of the dynamics described.We show that the process of standardisation of farm buildings prevails in the majority of the territories studied.This phenomenon has intensified in recent years with the development of vast photovoltaic-roofed sheds,accentuating the farm-land conversion and soil sealing.At the same time,in areas with strong environmental,landscape and heritage contexts,a'new adventure in farm buildings'(2022 survey)is taking shape.It is primarily driven by local short food chains,which rely on self-construction,repurposing and refurbishment,the sharing of tools and equipment,and which favour the use and reuse of local resources.This study shows that farm-buildings dynamics crystallise many challenges confronting the reterritorialisation of agriculture and food production.展开更多
The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. Th...The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future.The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance.Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.展开更多
文摘This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertook a ter-ritorial diagnosis based on actor statements,using 28 semi-structured interviews across Occitania.This diagnosis was enriched by graphic modelling,which enabled the spatialization of the dynamics described.We show that the process of standardisation of farm buildings prevails in the majority of the territories studied.This phenomenon has intensified in recent years with the development of vast photovoltaic-roofed sheds,accentuating the farm-land conversion and soil sealing.At the same time,in areas with strong environmental,landscape and heritage contexts,a'new adventure in farm buildings'(2022 survey)is taking shape.It is primarily driven by local short food chains,which rely on self-construction,repurposing and refurbishment,the sharing of tools and equipment,and which favour the use and reuse of local resources.This study shows that farm-buildings dynamics crystallise many challenges confronting the reterritorialisation of agriculture and food production.
文摘The natural upper boundary of a forest(forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future.The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance.Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.