With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective o...With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective of a cloud consumer, a cloud applica tion processes a large information flow in volving user actions that access resources, but little work has so far been devoted to research from the perspective of the interaction be tween the user and the cloud application. In this paper, we analyze the interaction in detail, and propose a general mathematical interac tion model to formulate the challenge pertain ing to storage resource allocation as an opti mization problem, focusing on minimizing both the user's cost and server's consumption. A potential response mechanism is then de signed based on the interaction model. Fur thermore, the proposed model is used to ex plore strategies when multiple users access the same file simultaneously. Additionally, an improved queuing system, namely M/ G~ oo queue with standby, is introduced. Finally, an evaluation is presented to verify the interac- tion model.展开更多
A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic(ACE-ENA)aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysi...A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic(ACE-ENA)aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysical properties and the aerosol-cloud-precipitation interactions.The spatial and vertical variabilities of cloud and drizzle microphysics are found in two different sets of flight legs:Leg-1 and Leg-2,which are parallel and perpendicular to the cloud propagation,respectively.The cloud along Leg-2 was close to adiabatic,where cloud-droplet effective radius and liquid water content linearly increase from cloud base to cloud top with less drizzle.The cloud along Leg-1 was sub-adiabatic with lower clouddroplet number concentration and larger cloud-droplet effective,but higher drizzle droplet number concentration,larger drizzle droplet median diameter and drizzle liquid water content.The heavier drizzle frequency and intensity on Leg-1 were enhanced by the collision-coalescence processes within cloud due to strong turbulence.The sub-cloud precipitation rate on Leg-1 was significantly higher than that along Leg-2.As a result,the sub-cloud accumulation mode aerosols and CCN on Leg-1 were depleted,but the coarse model aerosols increased.This further leads to a counter-intuitive phenomenon that the CCN is less than cloud-droplet number concentration for Leg-1.The average CCN loss rates are −3.89 cm^(-3)h^(-1)and −0.77 cm^(-3)h^(-1) on Leg-1 and Leg-2,respectively.The cloud and drizzle heterogeneities inside the same stratocumulus can significantly alter the sub-cloud aerosols and CCN budget.Hence it should be treated with caution in the aircraft assessment of aerosol-cloud-precipitation interactions.展开更多
In the Mexican Intertropical Convergence Zone, particle size distributions within 500 m of cloud boundaries at altitudes of 1000, 2500, and 4200 m, were compared against size distributions at the same levels but 1500 ...In the Mexican Intertropical Convergence Zone, particle size distributions within 500 m of cloud boundaries at altitudes of 1000, 2500, and 4200 m, were compared against size distributions at the same levels but 1500 m away from the clouds. The differences in the distributions near and far from the cloud are related to processes that may change particle properties inside the cloud. Chemical changes in the aerosols are deduced from the particles' refractive index, as derived from comparisons with the scattering coeflcient measured by a nephelometer. An analysis of ten cloud systems indicates that vertical transport of cloud base aerosol followed by entrainment/detrainment is the cloud processing signature most frequently observed in the comparisons (65%). Changes in the chemical composition are observed in approximately 20% of the cases and another 20% of the cases showed removal by precipitation. About 5% of the comparisons showed clear evidence of changes by coalescence. The principal effect of these cloud-processed aerosols is observed in the increase of optical depth in the layer from 30 m to 4200 m in the near-cloud regions, in comparison with the atmosphere further from clouds.展开更多
With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for ...With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-and- dropping one point-based model onto another model’s surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.展开更多
A bow shock is formed in the interaction of a high-speed laser-driven plasma cloud with a cylinder obstacle. Its temporal and spatial structures are observed by shadowgraphy and interferometry. The width of the shock ...A bow shock is formed in the interaction of a high-speed laser-driven plasma cloud with a cylinder obstacle. Its temporal and spatial structures are observed by shadowgraphy and interferometry. The width of the shock transition region is - 50 μm, comparable to the ion–ion collision mean free path, which indicates that collision is dominated in the shock probably. The Mach-number of the ablating plasma cloud is ~ 15 at first, and decreases with time resulting in a changing shock structure. A two-dimension hydrodynamics code, USim, is used to simulate the interaction process. The simulated shocks can well reproduce the observed.展开更多
Intelligent Space(IS)is widely regarded as a promising paradigm for improving quality of life through using service task processing.As the field matures,various state-of-the-art IS architectures have been proposed.Mos...Intelligent Space(IS)is widely regarded as a promising paradigm for improving quality of life through using service task processing.As the field matures,various state-of-the-art IS architectures have been proposed.Most of the IS architectures designed for service robots face the problems of fixedfunction modules and low scalability when performing service tasks.To this end,we propose a hybrid cloud service robot architecture based on a Service-Oriented Architecture(SOA).Specifically,we first use the distributed deployment of functional modules to solve the problem of high computing resource occupancy.Then,the Socket communication interface layer is designed to improve the calling efficiency of the function module.Next,the private cloud service knowledge base and the dataset for the home environment are used to improve the robustness and success rate of the robot when performing tasks.Finally,we design and deploy an interactive system based on Browser/Server(B/S)architecture,which aims to display the status of the robot in real-time as well as to expand and call the robot service.This system is integrated into the private cloud framework,which provides a feasible solution for improving the quality of life.Besides,it also fully reveals how to actively discover and provide the robot service mechanism of service tasks in the right way.The results of extensive experiments show that our cloud system provides sufficient prior knowledge that can assist the robot in completing service tasks.It is an efficient way to transmit data and reduce the computational burden on the robot.By using our cloud detection module,the robot system can save approximately 25% of the averageCPUusage and reduce the average detection time by 0.1 s compared to the locally deployed system,demonstrating the reliability and practicality of our proposed architecture.展开更多
The aerosol can change the clouds properties;the clouds, however, affect the normal behavior of aerosol optical depth. Considerable effects arise while the interaction of aerosol and clouds unavoidably encounters the ...The aerosol can change the clouds properties;the clouds, however, affect the normal behavior of aerosol optical depth. Considerable effects arise while the interaction of aerosol and clouds unavoidably encounters the presence of greenhouse gases (GHGs) in atmosphere. This research discusses the influence of two selected aerosol types, on the clouds in Africa, over the selected sub-time series in the years 1980-2018. Sahara desert’s dust is mainly constituted by hematite minerals;which, in return, is mainly composed by the iron oxides, a powerful solar and infra-red radiation absorbing matter and thus a strong and direct radiative forcing agent. For that reason, together with the fact that it is windblown over the biggest region that surrounds the desert, dust is one of the strongly considered aerosol in this research. Besides, black carbon (BC), mostly from the anthropogenic biomass burning process in the mid latitude’s African savanna, is the second aerosol type selected for this research: it is one of the abundantly available aerosol types and it is one of the strongest atmospheric radiant energy absorbers. For sake of valid and trustworthy results, the data is collected from multiple satellite remote sensing tools and instruments, all targeting the aerosol-cloud interaction and effects. In this research, different measurements were carried out;those are the spatiotemporal averaged cloud cover, the aerosol (dust and BC) extinction optical thickness (AOT), the anomaly of aerosol optical depth (AAOD) as well as different scatter plots’ correlation analysis. For findings: the direct influence of hydrophilic BC on clouds formation in central African sub-region is experimentally demonstrated;the dust aerosol highly influences the North African sub-region’s cloud formation.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No. 61271199the Fundamental Research Funds in Beijing Jiaotong University under Grant No. W11JB00630
文摘With the increasing popularity of cloud computing, there is an increased de mand for cloud resources in cloud. It has be come even more urgent to find solutions to improve resource utilization. From the per spective of a cloud consumer, a cloud applica tion processes a large information flow in volving user actions that access resources, but little work has so far been devoted to research from the perspective of the interaction be tween the user and the cloud application. In this paper, we analyze the interaction in detail, and propose a general mathematical interac tion model to formulate the challenge pertain ing to storage resource allocation as an opti mization problem, focusing on minimizing both the user's cost and server's consumption. A potential response mechanism is then de signed based on the interaction model. Fur thermore, the proposed model is used to ex plore strategies when multiple users access the same file simultaneously. Additionally, an improved queuing system, namely M/ G~ oo queue with standby, is introduced. Finally, an evaluation is presented to verify the interac- tion model.
基金supported by the NSF grants AGS-2031750 and AGS-2031751supported as part of the “Enabling Aerosol-cloud interactions at GLobal convection-permitting scal ES (EAGLES)” project (74358),funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Earth System Modeling program with the subcontract to the University of Arizona
文摘A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic(ACE-ENA)aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysical properties and the aerosol-cloud-precipitation interactions.The spatial and vertical variabilities of cloud and drizzle microphysics are found in two different sets of flight legs:Leg-1 and Leg-2,which are parallel and perpendicular to the cloud propagation,respectively.The cloud along Leg-2 was close to adiabatic,where cloud-droplet effective radius and liquid water content linearly increase from cloud base to cloud top with less drizzle.The cloud along Leg-1 was sub-adiabatic with lower clouddroplet number concentration and larger cloud-droplet effective,but higher drizzle droplet number concentration,larger drizzle droplet median diameter and drizzle liquid water content.The heavier drizzle frequency and intensity on Leg-1 were enhanced by the collision-coalescence processes within cloud due to strong turbulence.The sub-cloud precipitation rate on Leg-1 was significantly higher than that along Leg-2.As a result,the sub-cloud accumulation mode aerosols and CCN on Leg-1 were depleted,but the coarse model aerosols increased.This further leads to a counter-intuitive phenomenon that the CCN is less than cloud-droplet number concentration for Leg-1.The average CCN loss rates are −3.89 cm^(-3)h^(-1)and −0.77 cm^(-3)h^(-1) on Leg-1 and Leg-2,respectively.The cloud and drizzle heterogeneities inside the same stratocumulus can significantly alter the sub-cloud aerosols and CCN budget.Hence it should be treated with caution in the aircraft assessment of aerosol-cloud-precipitation interactions.
文摘In the Mexican Intertropical Convergence Zone, particle size distributions within 500 m of cloud boundaries at altitudes of 1000, 2500, and 4200 m, were compared against size distributions at the same levels but 1500 m away from the clouds. The differences in the distributions near and far from the cloud are related to processes that may change particle properties inside the cloud. Chemical changes in the aerosols are deduced from the particles' refractive index, as derived from comparisons with the scattering coeflcient measured by a nephelometer. An analysis of ten cloud systems indicates that vertical transport of cloud base aerosol followed by entrainment/detrainment is the cloud processing signature most frequently observed in the comparisons (65%). Changes in the chemical composition are observed in approximately 20% of the cases and another 20% of the cases showed removal by precipitation. About 5% of the comparisons showed clear evidence of changes by coalescence. The principal effect of these cloud-processed aerosols is observed in the increase of optical depth in the layer from 30 m to 4200 m in the near-cloud regions, in comparison with the atmosphere further from clouds.
基金Project supported by the National Natural Science Foundation of China (Nos. 60473106 and 60333010)the Program for Chang-jiang Scholars and Innovative Research Team in University (No. IRT0652), China
文摘With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-and- dropping one point-based model onto another model’s surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01501)the National Natural Science Foundation of China(Grant Nos.11135012,11375262,11503041,and 11520101003)the Science Challenge Program of China(Grant No.JCKY2016212A505)
文摘A bow shock is formed in the interaction of a high-speed laser-driven plasma cloud with a cylinder obstacle. Its temporal and spatial structures are observed by shadowgraphy and interferometry. The width of the shock transition region is - 50 μm, comparable to the ion–ion collision mean free path, which indicates that collision is dominated in the shock probably. The Mach-number of the ablating plasma cloud is ~ 15 at first, and decreases with time resulting in a changing shock structure. A two-dimension hydrodynamics code, USim, is used to simulate the interaction process. The simulated shocks can well reproduce the observed.
基金supported in part by the National Natural Science Foundation of China under Grant 62273203,Grant U1813215in part by the Special Fund for the Taishan Scholars Program of Shandong Province(ts201511005).
文摘Intelligent Space(IS)is widely regarded as a promising paradigm for improving quality of life through using service task processing.As the field matures,various state-of-the-art IS architectures have been proposed.Most of the IS architectures designed for service robots face the problems of fixedfunction modules and low scalability when performing service tasks.To this end,we propose a hybrid cloud service robot architecture based on a Service-Oriented Architecture(SOA).Specifically,we first use the distributed deployment of functional modules to solve the problem of high computing resource occupancy.Then,the Socket communication interface layer is designed to improve the calling efficiency of the function module.Next,the private cloud service knowledge base and the dataset for the home environment are used to improve the robustness and success rate of the robot when performing tasks.Finally,we design and deploy an interactive system based on Browser/Server(B/S)architecture,which aims to display the status of the robot in real-time as well as to expand and call the robot service.This system is integrated into the private cloud framework,which provides a feasible solution for improving the quality of life.Besides,it also fully reveals how to actively discover and provide the robot service mechanism of service tasks in the right way.The results of extensive experiments show that our cloud system provides sufficient prior knowledge that can assist the robot in completing service tasks.It is an efficient way to transmit data and reduce the computational burden on the robot.By using our cloud detection module,the robot system can save approximately 25% of the averageCPUusage and reduce the average detection time by 0.1 s compared to the locally deployed system,demonstrating the reliability and practicality of our proposed architecture.
文摘The aerosol can change the clouds properties;the clouds, however, affect the normal behavior of aerosol optical depth. Considerable effects arise while the interaction of aerosol and clouds unavoidably encounters the presence of greenhouse gases (GHGs) in atmosphere. This research discusses the influence of two selected aerosol types, on the clouds in Africa, over the selected sub-time series in the years 1980-2018. Sahara desert’s dust is mainly constituted by hematite minerals;which, in return, is mainly composed by the iron oxides, a powerful solar and infra-red radiation absorbing matter and thus a strong and direct radiative forcing agent. For that reason, together with the fact that it is windblown over the biggest region that surrounds the desert, dust is one of the strongly considered aerosol in this research. Besides, black carbon (BC), mostly from the anthropogenic biomass burning process in the mid latitude’s African savanna, is the second aerosol type selected for this research: it is one of the abundantly available aerosol types and it is one of the strongest atmospheric radiant energy absorbers. For sake of valid and trustworthy results, the data is collected from multiple satellite remote sensing tools and instruments, all targeting the aerosol-cloud interaction and effects. In this research, different measurements were carried out;those are the spatiotemporal averaged cloud cover, the aerosol (dust and BC) extinction optical thickness (AOT), the anomaly of aerosol optical depth (AAOD) as well as different scatter plots’ correlation analysis. For findings: the direct influence of hydrophilic BC on clouds formation in central African sub-region is experimentally demonstrated;the dust aerosol highly influences the North African sub-region’s cloud formation.