In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of m...In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.展开更多
针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CH...针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。展开更多
文摘In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.
文摘针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。