Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi...Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,...Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.展开更多
In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of m...In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.展开更多
A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems....A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.展开更多
This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI...This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.展开更多
A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining th...A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining the power electronics with batteries using low-voltage MOSFET transistors in a series cascade arrangement the cost and mass targets could be met 12 years earlier (in 2023 and 20 times lighter if an application specific integrated circuit (ASIC) is used. A 200 kW peak reference car was used to evaluate cost and mass benefits using four different topologies of power electronics. Vehicle installation is shown to be simplified as only passive cooling is required removing the need for liquid cooling systems and the arrangement is inherently safe;no high voltages are present when the vehicle is stationary. The inherently higher efficiency of CHB increases vehicle range. The converter with integrated batteries can also behave as an integrated on-board battery charger delivering additional off-vehicle benefits by removing the need for costly external chargers.展开更多
Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to imp...Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
基金supported in part by the CAS Project for Young Scientists in Basic Research under Grant No. YSBR-045the Youth Innovation Promotion Association CAS under Grant 2022137the Institute of Electrical Engineering CAS under Grant E155320101。
文摘Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 50277035)the Natural Science Foundation of Zheji-ang Province (No. Z104441),China
文摘Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.
文摘In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.
基金supported by the National Key Research and Development Plan,Grant/Award Number:2018YFB1503005.
文摘A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.
基金Assistance provided by Council of scientific and industrial research(CSIR),Government of India,under the acknowledgment number 143460/2K19/1(File:09/969(0013)/2020-EMR-I)and Siksha O Anusandhan(Deemed to be University).
文摘This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.
文摘A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining the power electronics with batteries using low-voltage MOSFET transistors in a series cascade arrangement the cost and mass targets could be met 12 years earlier (in 2023 and 20 times lighter if an application specific integrated circuit (ASIC) is used. A 200 kW peak reference car was used to evaluate cost and mass benefits using four different topologies of power electronics. Vehicle installation is shown to be simplified as only passive cooling is required removing the need for liquid cooling systems and the arrangement is inherently safe;no high voltages are present when the vehicle is stationary. The inherently higher efficiency of CHB increases vehicle range. The converter with integrated batteries can also behave as an integrated on-board battery charger delivering additional off-vehicle benefits by removing the need for costly external chargers.
文摘Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.