期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Modular System of Cascaded Converters Based on Model Predictive Control
1
作者 Chunxue Wen Yaoquan Wei +3 位作者 Peng Wang Jianlin Li Jinghua Zhou Qingyun Li 《Energy Engineering》 EI 2024年第11期3241-3261,共21页
A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.... A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy. 展开更多
关键词 Renewable energy generation systems MPC Buck/Boost+CLLLC cascaded converter modular system of cascaded converters
下载PDF
Inter-cluster Voltage Balancing Control of Modular Multilevel Cascaded Converter Under Unbalanced Grid Voltage 被引量:1
2
作者 Oghenewvogaga Oghorada Li Zhang +2 位作者 Ayodele Esan Dickson Egbune Julius Uwagboe 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期515-523,共9页
This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(ST... This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(STATCOM)under unbalanced grid voltage.The negative-sequence component of grid voltage at the point of common connection(PCC)causes unbalanced active power flow in the phase limbs of converter.This leads to the imbalance of DC voltages of the sub-module capacitors across the MMCC phases,and consequently,the malfunction of converter.The proposed solution is to inject both negative-sequence current(NSC)and zero-sequence voltage(ZSV)into the phase limbs of MMCC.A quantification factor Qf is used to achieve the sharing of inter-cluster active pow-er between the NSC and ZSV injection methods.Accurate determination of the quantification factor has been presented.In addition to maintaining the DC voltages of sub-module capacitor across the MMCC phases balanced,it also prevents the overcurrent and overvoltage of converter by injecting NSC and ZSV with the right proportion.The control scheme is validated on a 3.54 kV 1.2 MVA power system using MMCC-based STATCOM with 3-level bridge cells as sub-modules.The results show that the proposed scheme provides superior effectiveness in eliminating the voltage imbalance of DC capacitor in the phase limb while maintaining low voltage and current ratings. 展开更多
关键词 Low-voltage ride through(LVRT) single-star bridge converter(SSBC) static synchronous compensator(STATCOM) modular multilevel cascaded converter(MMCC) quantification factor
原文传递
Synchronization analysis on cascaded multilevel converters with distributed control
3
作者 Ming-yao MA Xiang-ning HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期190-198,共9页
Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,... Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results. 展开更多
关键词 cascaded multilevel converter Integrated module SYNCHRONIZATION
下载PDF
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:6
4
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG cascaded H-bridge converters Battery energy storage system Renewable energy integration
下载PDF
ANALYSIS OF A NEW SOFT SWITCHING PWM INVERTER
5
作者 丁洛 严仰光 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期172-179,共8页
Resonant dc link inverter is a zero voltage switching inverter.This paper proposes a new cascade resonant dc link inverter that consists of two power converter units,a rugged resonant dc link and an inverter bridge.A ... Resonant dc link inverter is a zero voltage switching inverter.This paper proposes a new cascade resonant dc link inverter that consists of two power converter units,a rugged resonant dc link and an inverter bridge.A detailed analysis of the soft switching process in the rugged resonant dc link and the realization of pulse width modulation (PWM) control strategy in the inverter bridge are presented in the paper. The operation modes, the input and output features and the interface between the rugged resonant dc link and the inverter bridge are also discussed. The relationship between the circuit features and the parameters is deduced, which provides a theoretical base for the circuit design. The analysis results show that the rugged resonant dc link can be regulated by open-loop control and the control of the rugged resonant dc link is independent of that of the inverter bridge, which makes the inverter control easy and realizable.The circuit of the inverter is simulated with a standard circuit simulation program PSPICE. The simulation results are corresponding to the predicted ones of the circuit analysis. 展开更多
关键词 INVERTERS pulse width modulation resonant circuits soft switching cascade converter
下载PDF
Stability-improvement Method of Cascaded DC-DC Converters with Additional Voltage-error Mutual Feedback Control 被引量:5
6
作者 Zhongya Guo Hong Li +2 位作者 Chen Liu Yangyang Zhao Wenzhe Su 《Chinese Journal of Electrical Engineering》 CSCD 2019年第2期63-71,共9页
The interaction between the source and load converters in cascaded DC-DC converters may cause instability.Thus,improving the stability of cascaded DC-DC converters is important.To solve the above-mentioned problem,a f... The interaction between the source and load converters in cascaded DC-DC converters may cause instability.Thus,improving the stability of cascaded DC-DC converters is important.To solve the above-mentioned problem,a flowchart to improve the control method is established by calculating the eigenvalue sensitivity of a time-domain model of cascaded DC-DC converters.Further,an additional voltage-error mutual feedback control method is firstly proposed based on the flowchart provided in this study to improve the stability of cascaded DC-DC converters.Subsequently,the influence of the proposed mutual feedback control on the stability of cascaded DC-DC converters is analyzed.Finally,the effectiveness of the proposed control method is verified by simulation and experiment. 展开更多
关键词 cascaded DC-DC converters stability improvement time-domain model eigenvalue sensitivity
原文传递
Overview on Reliability of Modular Multilevel Cascade Converters 被引量:4
7
作者 Zhengming Zhao Kai Li +2 位作者 Ye Jiang Sizhao Lu Liqiang Yuan 《Chinese Journal of Electrical Engineering》 2015年第1期37-49,共13页
Multi-level converters have been used extensively in modern industry which calls for energy conversion with high-power and high-or medium-voltage.Because of its modularity and scalability,the multi-level converter wit... Multi-level converters have been used extensively in modern industry which calls for energy conversion with high-power and high-or medium-voltage.Because of its modularity and scalability,the multi-level converter with modular structure can be extended to different voltage levels and has a variety of forms in practical applications.It has attracted much attention from academia in the past decade,however,as a result of the numerous vulnerable power electronics sub-modules,significant challenges remain with regards to reliability.After summarizing the current research status of modular multilevel cascade converters,the main issues of reliability are reviewed in the paper.Firstly,the failure cases are thoroughly surveyed and classified,and the main failure causes are analyzed.Secondly,the reliability evaluation methods are reviewed and applied to the modular multilevel cascade converters.Thirdly,some promising measures to improve the reliability are presented and discussed,including parameter selection,redundancy design,fault-tolerant control and so on.Then,a complete reliability-oriented design procedure for the modular multilevel cascade converters is proposed.Finally,the challenges and opportunities to improve the reliability are concluded. 展开更多
关键词 RELIABILITY modular multi-level cascade converters failure modes failure rate reliability evaluation FAULT-TOLERANT
原文传递
Finite-time robust control for transformerless H-bridge cascaded STATCOM with star configuration
8
作者 Xingyu Lv Bangjun Lei Shumin Fei 《Journal of Control and Decision》 EI 2021年第2期106-115,共10页
This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop contr... This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM. 展开更多
关键词 cascaded H-bridge converter transformerless STATCOM finite time robust control oscillations damping transient stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部