We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are th...We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.展开更多
An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor ...An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22gm-wide and 2mm-long epilayer-up bonded device.展开更多
This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures t...This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures that are in close proximity to the optical core. The slow-wave PhC structure is designed for two different material configurations and placed in the modulator as a superstrate to the optical core; simulation results are depicted for both 1D and 2D PhC structures. The PM characteristics are modeled using a combination of the finite element method and the optical beam propagation method in both the RF and optical domains, respectively. The phase-shift simulation results show a factor of 1.7 increase in an effective EO coefficient (120 pm/V) while maintaining a broadband bandwidth of 40 GHz.展开更多
Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface s...Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface signal amplification is usually required due to the low abundance of micro RNA in total RNA expressions, which impairs detection efficiency and limits its application in point of care test(POCT) manner. Herein, DNA cascade reactors(DCRs) functionalized photonic crystal(PC)array was fabricated for express and sensitive detections of mi RNA-21 and mi RNA-155. DCRs were assembled by interval conjugation of self-quenched hairpin DNA probes to single strand DNA nanowire synthesized by rolling circle amplification,which generated cascade DNA hybridization reactions in response to target mi RNAwith instant fluorescence recovery signal. PC array patterns with multi-structure colors further amplified fluorescence with their respective photonic bandgaps(PBGs)matching with the emission peaks of fluorescence molecules labelled on DCRs. The as-prepared DCRs functionalized PC array demonstrated express and sensitive simultaneous detections of mi RNA-21 and mi RNA-155 with hundreds f M detection limits only in 15 min, and was successfully applied in fast quantifications of low abundance mi RNAs from cell lysates and spiked mi RNAs from human serum, which would hold great potential for disease diagnosis and therapeutic effect monitoring with a POCT manner.展开更多
基金Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116the National Natural Science Foundation of China under Grant Nos61107059,61077047 and 11264001
文摘We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.
文摘An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22gm-wide and 2mm-long epilayer-up bonded device.
文摘This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures that are in close proximity to the optical core. The slow-wave PhC structure is designed for two different material configurations and placed in the modulator as a superstrate to the optical core; simulation results are depicted for both 1D and 2D PhC structures. The PM characteristics are modeled using a combination of the finite element method and the optical beam propagation method in both the RF and optical domains, respectively. The phase-shift simulation results show a factor of 1.7 increase in an effective EO coefficient (120 pm/V) while maintaining a broadband bandwidth of 40 GHz.
基金supported by the National Natural Science Foundation of China(21635005,21605083,21974064)the National Research Foundation for Thousand Youth Talents Plan of China,Specially-appointed Professor Foundation of Jiangsu Province,Program for innovative Talents and Entrepreneurs of Jiangsu Province。
文摘Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface signal amplification is usually required due to the low abundance of micro RNA in total RNA expressions, which impairs detection efficiency and limits its application in point of care test(POCT) manner. Herein, DNA cascade reactors(DCRs) functionalized photonic crystal(PC)array was fabricated for express and sensitive detections of mi RNA-21 and mi RNA-155. DCRs were assembled by interval conjugation of self-quenched hairpin DNA probes to single strand DNA nanowire synthesized by rolling circle amplification,which generated cascade DNA hybridization reactions in response to target mi RNAwith instant fluorescence recovery signal. PC array patterns with multi-structure colors further amplified fluorescence with their respective photonic bandgaps(PBGs)matching with the emission peaks of fluorescence molecules labelled on DCRs. The as-prepared DCRs functionalized PC array demonstrated express and sensitive simultaneous detections of mi RNA-21 and mi RNA-155 with hundreds f M detection limits only in 15 min, and was successfully applied in fast quantifications of low abundance mi RNAs from cell lysates and spiked mi RNAs from human serum, which would hold great potential for disease diagnosis and therapeutic effect monitoring with a POCT manner.