In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonl...In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.展开更多
In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the comp...In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the computational complexity of the method.展开更多
Aiming at providing theoretical basis for effective protection of biodiversity, the study presents a cascade method which combines both qualitative and quantitative methods, incorporates basic data with RS(remote se...Aiming at providing theoretical basis for effective protection of biodiversity, the study presents a cascade method which combines both qualitative and quantitative methods, incorporates basic data with RS(remote sense) technology, and ranks the ecosystems according to its ability of biodiversity sustainability in Hebei Province. The results indicate that the most important areas for protection in Hebei Province are forest and meadow ecosystems in some highlands around Xiaowutai Mountain, Wuling Mountain, North Hebei, Taihang Mountain and East Hebei; grass ecosystems in part of plateau area and North Hebei; and some scattered wetlands in the plain and inshore areas. This method is suitable for undertaking large-scale investigations especially when the data are not adequate or unevenly distributed spatially.展开更多
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is establishe...In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.展开更多
In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optim...In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.展开更多
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the...For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.展开更多
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenp...In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.展开更多
文摘In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.
基金supported by Educational Commission of Guangdong Province,China(No.2012LYM-0066)the National Social Science Foundation of China(No.14CJL016)
文摘In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the computational complexity of the method.
基金the National Natural Science Foundation of China (30590381)
文摘Aiming at providing theoretical basis for effective protection of biodiversity, the study presents a cascade method which combines both qualitative and quantitative methods, incorporates basic data with RS(remote sense) technology, and ranks the ecosystems according to its ability of biodiversity sustainability in Hebei Province. The results indicate that the most important areas for protection in Hebei Province are forest and meadow ecosystems in some highlands around Xiaowutai Mountain, Wuling Mountain, North Hebei, Taihang Mountain and East Hebei; grass ecosystems in part of plateau area and North Hebei; and some scattered wetlands in the plain and inshore areas. This method is suitable for undertaking large-scale investigations especially when the data are not adequate or unevenly distributed spatially.
基金the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349)US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1)+2 种基金the National Natural Science Foundation of China(Grant No.10571172)the National Basic Research Program(Grant No.2005CB321704)the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9)
文摘In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
基金Supported by the National Natural Science Foundation of China under grant 10071015.
文摘In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.
基金supported by National Natural Science Foundation of China(Grant Nos.11226332,41204082 and 11071067)the China Postdoctoral Science Foundation(Grant No.2011M501295)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162120036)the Construct Program of the Key Discipline in Hunan Province
文摘For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.
基金supported by National Natural Science Foundation of China(Grant Nos.11801021 and 11571027)Foundation for Fundamental Research of Beijing University of Technology(Grant No.006000546318504)International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2018B32)。
文摘In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.