Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selecte...Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selected as the study subjects,and the cost-effectiveness analysis of different dosage forms of Yinzhihuang in the treatment of neonatal jaundice was selected as the teaching case.The flipped classroom combined with case-based learning teaching method was used to carry out theoretical teaching to the students.After the course,questionnaires were distributed through the Sojump platform to evaluate the teaching effect.Results:The results of the questionnaire showed that 85.71%of the students believed that the flipped classroom combined with case-based learning teaching method was helpful in mobilizing the learning enthusiasm and initiative,and improving the comprehensive application ability of the knowledge of pharmacoeconomics.92.86%of the students think that it is conducive to the understanding and memorization of learning content,as well as the cultivation of teamwork,communication,etc.Conclusion:Flipped classroom combined with case-based learning teaching method can improve students’knowledge mastery,thinking skills,and practical application skills,as well as optimize and improve teachers’teaching levels.展开更多
Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the dec...Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the deciding factors that drive students'perceived advantages in class to improve precision education and the teaching model.Methods:A mixed strategy of an existing flipped classroom(FC)and a case-based learning(CBL)model was conducted in a medical morphology curriculum for 575 postgraduate students.The subjective learning evaluation of the individuals(learning time,engagement,study interest and concentration,and professional integration)was collected and analyzed after FC-CBL model learning.Results:The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model.Students felt more engaged by instructors in person and benefited in terms of time-saving,flexible arrangements,and professional improvement.Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories:1)advancing a guideline of precision teaching according to individual characteristics;2)revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course;3)understanding the perceived advantages and their interfaces;and 4)barriers and/or improvement to implement the FC-CBL model in the Research Design class,such as a richer description of e-learning and hands-on practice.Conclusion:Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training.展开更多
Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits base...Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction.展开更多
To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction...To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.展开更多
The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a fe...The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a feasible and practical product configuration method is presented in masscustomization. The basic idea of the appoach is to integrate case-based reasoning (CBR) with a con-straint satisfaction problem(CSP). The similarity measure between a crisp and range is also given,which is common in case retrieves. Based on the configuration model, a product platform and customerneeds, case adaptation is carried out with the repair-based algorithm. Lastly, the methodology in theelevator configuration design domain is tested.展开更多
The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to th...The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts.展开更多
An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressio...An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH.展开更多
The current method of case-based design (CBD) can be well practiced forconfiguration design in which design experience knowledge is involved. However, since the designcase is confined to a certain application domain, ...The current method of case-based design (CBD) can be well practiced forconfiguration design in which design experience knowledge is involved. However, since the designcase is confined to a certain application domain, it is difficult for CBD to be applied toconceptual design process that develops concepts to meet design specifications. Firstly, a functionfactor description space is erected to provide an exhibition room for all functions of design cases.Next, the approach for identifying the space state of function factor in description space isproposed, including the determination of the similarities between function factors of design case.And then a general object-oriented representation for design case is presented by bringing the classof function and in-out flow into the current case representation. Finally, a living example forelectro-pet design that illustrates the implementation of the method for case-based conceptualdesign based on distributed design case repositories is described.展开更多
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not avail...Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.展开更多
New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex b...New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within±25℃ and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.展开更多
Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slop stability evaluation by...Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slop stability evaluation by using case-based reasoning is presented. Considering the sensitivity of attribute weights to the environment, the algorithm of attribute weights is set up on the basis of the concept of changeable weights. Calculating the similarity between target case of the slope and base case, the stability of target case is evaluated. It is shown from examples that the method is simple, visual, practical, and convenient for use.展开更多
In order to develop an intelligent case-based reasoning (CBR) system to reuse fixture de- sign knowledge, ontology technology was integrated in CBR system by semantic annotation of fixture design case. Domain ontolo...In order to develop an intelligent case-based reasoning (CBR) system to reuse fixture de- sign knowledge, ontology technology was integrated in CBR system by semantic annotation of fixture design case. Domain ontology of fixture design was constructed; concepts and relations were de- fined and represented. The 2-level similarity evaluation approach of domain ontology was presented. The concept similarity of cases was calculated as the first grade case retrieval. Numerical measure- ment was the second grade case retrieval, which adopted various methods to calculate different types of attribute values. The problem of similarity measurement of fixture design case was resolved. Pro- totype system based on the proposed method was illustrated and the retrieval approach was proved to be efficient.展开更多
A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning....A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning. The new approach was proposed to decompose behavior into sub-behaviors that are easier to recognize using a saliency-based visual attention model. New representation of behavior was introduced, in which the sub-behavior and the associated time characteristic of sub-behavior were used to represent behavior case. In the process of case-based reasoning, apart from considering the similarity of basic sub-behaviors,order factor was proposed to measure the similarity of a time order among the sub-behaviors and span factor was used to measure the similarity of duration time of each sub-behavior, which makes the similarity calculations more rational and comprehensive.Experimental results show the effectiveness of the proposed method in comparison with other related works and can run in real-time for the recognition of suspicious behaviors.展开更多
Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration le...Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE.展开更多
The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperatur...The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperature prediction model based on improved case-based reasoning (CBR) method is established to realize the online measurement of the work-pieces temperature. More specifically, the model is constructed by an advanced case-based reasoning method in which a state transition algorithm (STA) is firstly used to optimize the weights of feature attributes. In other words, STA is utilized to find the suitable attribute weights of the CBR model that can improve the accuracy of the case retrieval process. Finally, the CBR model based on STA (STCBR) was applied to predict the temperature of aluminum alloy work-pieces in the aging furnace. The results of the experiments indicated that the developed model can realize high-accuracy prediction of work-pieces temperature and it has good application prospects in the industrial field.展开更多
Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented,...Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented, where the case representation is constituted of workpiece knowledge, processing feature knowledge, and fixture feature knowledge. Running the prototype system shows that the knowledge representation method, using cases, s a better way to transform and explain the design knowledge.展开更多
When producing special-shape spring in CNC spring coiler,the setup of the coiler is often a manual work using a trial-and-error method.As a result,the setup of coiler consumes so much time and becomes the bottleneck o...When producing special-shape spring in CNC spring coiler,the setup of the coiler is often a manual work using a trial-and-error method.As a result,the setup of coiler consumes so much time and becomes the bottleneck of the spring production process.In order to cope with this situation,this paper proposes an automatic generation system of setup for CNC spring coiler us- ing case-based reasoning(CBR).The core of the study contains:(1)integrated reasoning model of CBR system;(2)spatial shape describe of special-shape spring based on feature;(3)coiling case representation using shape feature matrix;and(4)case similari- ty measure algorithm.The automatic generation system has implemented with C++Builder 6.0 and is helpful in improving the automaticity and efficiency of spring coiler.展开更多
Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo...Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.展开更多
The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several imple- mentation issues such...The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several imple- mentation issues such as matching attributes selection, similarity measure calculation, weights learning and training evaluation policies are carefully studied. The testing applications illustrate that an accuracy of 74.67 % can be achieved with 75 balanced-distributed failure cases covering 3 failure modes, and that the resulting learning weight vector can be well applied to the other 2 failure modes, achieving 73.3 % of recognition accuracy. It is also proved that its popularizing capability is good to the recognition of even more mixed failure modes.展开更多
Reference values of erythrocyte sedimentation rate(ESR)are the key to interpret ESR blood test in clinic.The common local reference ESR values are more accuracy in blood test that are established with natural geograph...Reference values of erythrocyte sedimentation rate(ESR)are the key to interpret ESR blood test in clinic.The common local reference ESR values are more accuracy in blood test that are established with natural geographical factors by using the multiple linear regression(MLR)model and the artificial neural network(ANN).These knowledge-based methods have limitations since the knowledge domains of ESR and natural geographical factors are limited.This paper presents a new cases-depended model to establish reference ESR values with natural geographical factors and location using case-based reasoning(CBR)since knowledge domain of ESR and geographical factors is weak.Overall 224 local normal ESR values of China that calculated from 13623 samples were obtained,and the corresponding natural geographical factors and location that include altitude,sunshine hours,relative humidity,temperature,precipitation,annual temperature range and annual average wind speed were obtained from the National Geomatics Center of China.CBR was used to predict the unseen local reference ESR values with cases.The average absolute deviation(AAD),mean square error(MSE),prediction accuracy(PA),and Pearson correlation coefficient(r)between the observed and estimated data of proposed model is 33.07%,9.02,66.93% and 0.78,which are better than those of ANN and MLR model.The results show that the proposed model provides higher prediction accuracy than those of the artificial neural network and multiple linear regression models.The predicted values are very close to the observed values.Model results show significant agreement of cases data.Consequently,the model is used to predict the unseen local reference ESR with natural geographical factors and location.In spatial,the highest ESR reference areas are distributed in the southern-western district of China that includes Sichuan,Chongqing,Guangxi and Guizhou provinces,and the reference ESR values are greater than 23 mm/60 min.The higher ESR reference values are distributed in the middle part and northern-eastern of China which include Hubei,Henan,Shaanxi,Shanxi,Jilin and Heilongjiang provinces,and the reference ESR values are greater than 18 mm/60min.The lowest ESR reference values are distributed in the northern-western of China that includes Tibet and Xinjiang,and the reference ESR values are lower than 5 mm/60min.展开更多
基金2022 Medical Innovation and Development Project of Lanzhou University(lzuyxcx-2022-40)2022 Education and Teaching Reform Research Project of Lanzhou University General Project(202201)The Foundation of the First Hospital of Lanzhou University(ldyyyn 2021-92)。
文摘Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selected as the study subjects,and the cost-effectiveness analysis of different dosage forms of Yinzhihuang in the treatment of neonatal jaundice was selected as the teaching case.The flipped classroom combined with case-based learning teaching method was used to carry out theoretical teaching to the students.After the course,questionnaires were distributed through the Sojump platform to evaluate the teaching effect.Results:The results of the questionnaire showed that 85.71%of the students believed that the flipped classroom combined with case-based learning teaching method was helpful in mobilizing the learning enthusiasm and initiative,and improving the comprehensive application ability of the knowledge of pharmacoeconomics.92.86%of the students think that it is conducive to the understanding and memorization of learning content,as well as the cultivation of teamwork,communication,etc.Conclusion:Flipped classroom combined with case-based learning teaching method can improve students’knowledge mastery,thinking skills,and practical application skills,as well as optimize and improve teachers’teaching levels.
基金supported by grants from the Hunan Province Academic Degree and Graduate Education Reform Project(No.2020JGYB028)the National Natural Science Foundation of China(No.81971891,No.82172196,No.81772134)+1 种基金the Key Laboratory of Emergency and Trauma(Hainan Medical University)of the Ministry of Education(No.KLET-202108)the College Students'Innovation and Entrepreneurship Project(No.S20210026020013).
文摘Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the deciding factors that drive students'perceived advantages in class to improve precision education and the teaching model.Methods:A mixed strategy of an existing flipped classroom(FC)and a case-based learning(CBL)model was conducted in a medical morphology curriculum for 575 postgraduate students.The subjective learning evaluation of the individuals(learning time,engagement,study interest and concentration,and professional integration)was collected and analyzed after FC-CBL model learning.Results:The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model.Students felt more engaged by instructors in person and benefited in terms of time-saving,flexible arrangements,and professional improvement.Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories:1)advancing a guideline of precision teaching according to individual characteristics;2)revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course;3)understanding the perceived advantages and their interfaces;and 4)barriers and/or improvement to implement the FC-CBL model in the Research Design class,such as a richer description of e-learning and hands-on practice.Conclusion:Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training.
基金Basic Research program from the Institute of Earthquake Forecasting, China Earthquake Administration(Grant No. 2021IEF0505, CEAIEF20220102, and CEAIEF2022050502)high-resolution seismic monitoring and emergency application demonstration (phase Ⅱ)(Grant No. 31-Y30F09-9001-20/22)+1 种基金the National Natural Science Foundation of China (Grant No. 42072248 and 42041006)the National Key Research and Development Program of China (Grant No. 2021YFC3000601-3 and 2019YFE0108900).
文摘Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction.
文摘To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.
基金This project is supported by National Natural Science Foundation of China(No.50275133) and China Hi-tech Program CIMS Topic (No.2003-China(No.50275133) and China Hi-tech Program CIMS Topic (No.2003-AA411320). Received July 22, 2003
文摘The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a feasible and practical product configuration method is presented in masscustomization. The basic idea of the appoach is to integrate case-based reasoning (CBR) with a con-straint satisfaction problem(CSP). The similarity measure between a crisp and range is also given,which is common in case retrieves. Based on the configuration model, a product platform and customerneeds, case adaptation is carried out with the repair-based algorithm. Lastly, the methodology in theelevator configuration design domain is tested.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z115)Science and Technology Program of the Ministry of Construction of China (Grant No. 2008-K8-2)+1 种基金Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2007042)Open Fund of State Key Lab of CAD&CG, Zhejiang University, China (Grant No. A0914)
文摘The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts.
基金financially supported by the National Key Technology R&D Program in the 11th Five-Years Plan of China (No.2006BAE03A07)Fundamental Research Funds for the Central Universities (No.FRF-TP12-086A)
文摘An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH.
基金This project is support by National Natural Science Foundation of China(No.59990470)National High Technology Research and Development Program of China (No.2001AA415330).
文摘The current method of case-based design (CBD) can be well practiced forconfiguration design in which design experience knowledge is involved. However, since the designcase is confined to a certain application domain, it is difficult for CBD to be applied toconceptual design process that develops concepts to meet design specifications. Firstly, a functionfactor description space is erected to provide an exhibition room for all functions of design cases.Next, the approach for identifying the space state of function factor in description space isproposed, including the determination of the similarities between function factors of design case.And then a general object-oriented representation for design case is presented by bringing the classof function and in-out flow into the current case representation. Finally, a living example forelectro-pet design that illustrates the implementation of the method for case-based conceptualdesign based on distributed design case repositories is described.
基金supported by grants from the National Natural Science Foundation of China(41431177 and 41871300)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China+4 种基金the Innovation Project of State Key Laboratory of Resources and Environmental Information System(LREIS),China(O88RA20CYA)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province,ChinaSupports to A-Xing Zhu through the Vilas Associate Awardthe Hammel Faculty Fellow Awardthe Manasse Chair Professorship from the University of Wisconsin-Madison。
文摘Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.
基金Supported by National Basic Research Program of China (973 Program,Grant No.2010CB630801)
文摘New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within±25℃ and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.
基金Funded by Hubei Natural Science Foundation (2000J146)
文摘Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slop stability evaluation by using case-based reasoning is presented. Considering the sensitivity of attribute weights to the environment, the algorithm of attribute weights is set up on the basis of the concept of changeable weights. Calculating the similarity between target case of the slope and base case, the stability of target case is evaluated. It is shown from examples that the method is simple, visual, practical, and convenient for use.
基金Supported by the Ministerial Level Advanced Research Foundation of China(513180102)the National Defense Basic Research undation of China(A2220110001)
文摘In order to develop an intelligent case-based reasoning (CBR) system to reuse fixture de- sign knowledge, ontology technology was integrated in CBR system by semantic annotation of fixture design case. Domain ontology of fixture design was constructed; concepts and relations were de- fined and represented. The 2-level similarity evaluation approach of domain ontology was presented. The concept similarity of cases was calculated as the first grade case retrieval. Numerical measure- ment was the second grade case retrieval, which adopted various methods to calculate different types of attribute values. The problem of similarity measurement of fixture design case was resolved. Pro- totype system based on the proposed method was illustrated and the retrieval approach was proved to be efficient.
基金Project(50808025)supported by the National Natural Science Foundation of ChinaProject(2013GK3012)supported by the Science and Technology Project of Hunan Province,China
文摘A novel method case-based reasoning was proposed for suspicious behavior recognition. The method is composed of three departs: human behavior decomposition, human behavior case representation and case-based reasoning. The new approach was proposed to decompose behavior into sub-behaviors that are easier to recognize using a saliency-based visual attention model. New representation of behavior was introduced, in which the sub-behavior and the associated time characteristic of sub-behavior were used to represent behavior case. In the process of case-based reasoning, apart from considering the similarity of basic sub-behaviors,order factor was proposed to measure the similarity of a time order among the sub-behaviors and span factor was used to measure the similarity of duration time of each sub-behavior, which makes the similarity calculations more rational and comprehensive.Experimental results show the effectiveness of the proposed method in comparison with other related works and can run in real-time for the recognition of suspicious behaviors.
文摘Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE.
文摘The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperature prediction model based on improved case-based reasoning (CBR) method is established to realize the online measurement of the work-pieces temperature. More specifically, the model is constructed by an advanced case-based reasoning method in which a state transition algorithm (STA) is firstly used to optimize the weights of feature attributes. In other words, STA is utilized to find the suitable attribute weights of the CBR model that can improve the accuracy of the case retrieval process. Finally, the CBR model based on STA (STCBR) was applied to predict the temperature of aluminum alloy work-pieces in the aging furnace. The results of the experiments indicated that the developed model can realize high-accuracy prediction of work-pieces temperature and it has good application prospects in the industrial field.
文摘Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented, where the case representation is constituted of workpiece knowledge, processing feature knowledge, and fixture feature knowledge. Running the prototype system shows that the knowledge representation method, using cases, s a better way to transform and explain the design knowledge.
基金Supported by the Doctoral Programme Foundation of Education Ministry of China under the grant(No.20050699033)
文摘When producing special-shape spring in CNC spring coiler,the setup of the coiler is often a manual work using a trial-and-error method.As a result,the setup of coiler consumes so much time and becomes the bottleneck of the spring production process.In order to cope with this situation,this paper proposes an automatic generation system of setup for CNC spring coiler us- ing case-based reasoning(CBR).The core of the study contains:(1)integrated reasoning model of CBR system;(2)spatial shape describe of special-shape spring based on feature;(3)coiling case representation using shape feature matrix;and(4)case similari- ty measure algorithm.The automatic generation system has implemented with C++Builder 6.0 and is helpful in improving the automaticity and efficiency of spring coiler.
文摘Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.
文摘The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several imple- mentation issues such as matching attributes selection, similarity measure calculation, weights learning and training evaluation policies are carefully studied. The testing applications illustrate that an accuracy of 74.67 % can be achieved with 75 balanced-distributed failure cases covering 3 failure modes, and that the resulting learning weight vector can be well applied to the other 2 failure modes, achieving 73.3 % of recognition accuracy. It is also proved that its popularizing capability is good to the recognition of even more mixed failure modes.
基金Under the auspices of National Natural Science Foundation of China(No.40971060)
文摘Reference values of erythrocyte sedimentation rate(ESR)are the key to interpret ESR blood test in clinic.The common local reference ESR values are more accuracy in blood test that are established with natural geographical factors by using the multiple linear regression(MLR)model and the artificial neural network(ANN).These knowledge-based methods have limitations since the knowledge domains of ESR and natural geographical factors are limited.This paper presents a new cases-depended model to establish reference ESR values with natural geographical factors and location using case-based reasoning(CBR)since knowledge domain of ESR and geographical factors is weak.Overall 224 local normal ESR values of China that calculated from 13623 samples were obtained,and the corresponding natural geographical factors and location that include altitude,sunshine hours,relative humidity,temperature,precipitation,annual temperature range and annual average wind speed were obtained from the National Geomatics Center of China.CBR was used to predict the unseen local reference ESR values with cases.The average absolute deviation(AAD),mean square error(MSE),prediction accuracy(PA),and Pearson correlation coefficient(r)between the observed and estimated data of proposed model is 33.07%,9.02,66.93% and 0.78,which are better than those of ANN and MLR model.The results show that the proposed model provides higher prediction accuracy than those of the artificial neural network and multiple linear regression models.The predicted values are very close to the observed values.Model results show significant agreement of cases data.Consequently,the model is used to predict the unseen local reference ESR with natural geographical factors and location.In spatial,the highest ESR reference areas are distributed in the southern-western district of China that includes Sichuan,Chongqing,Guangxi and Guizhou provinces,and the reference ESR values are greater than 23 mm/60 min.The higher ESR reference values are distributed in the middle part and northern-eastern of China which include Hubei,Henan,Shaanxi,Shanxi,Jilin and Heilongjiang provinces,and the reference ESR values are greater than 18 mm/60min.The lowest ESR reference values are distributed in the northern-western of China that includes Tibet and Xinjiang,and the reference ESR values are lower than 5 mm/60min.