In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be...The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special E...In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special Education.Based on the cognitive style of deaf and hard-of-hearing students,we apply example induction,exhaustive induction,and mathematical induction to the teaching of Linear Algebra by utilizing specific course content.The aim is to design comprehensive teaching that caters to the cognitive style characteristics of deaf and hard-of-hearing students,strengthen their mathematical thinking styles such as quantitative thinking,algorithmic thinking,symbolic thinking,visual thinking,logical thinking,and creative thinking,and enhance the effectiveness of classroom teaching and learning outcomes in Linear Algebra for deaf and hard-of-hearing students.展开更多
Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is...Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.展开更多
presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic co...presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.展开更多
The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reas...The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.展开更多
To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ...To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.展开更多
In order to optimize ontology reasoning, a novel boundary-based modular extraction method is introduced for ontologies in EL^++ description logics. The proposed module extraction method is capable of identifying rel...In order to optimize ontology reasoning, a novel boundary-based modular extraction method is introduced for ontologies in EL^++ description logics. The proposed module extraction method is capable of identifying relevant axioms in an ontology based on the notion of boundaries of symbols, with respect to a given reasoning task. Exactness of the method is ensured by discovering all axioms in the original ontology that may be directly or indirectly relevant to boundaries of symbols used in the reasoning task. Compactness of the method is ensured by boundary partition and intersection operation performed in the process of module extraction. The theoretical foundation and a practical algorithm for computing the proposed axiom-based modules are presented. The proposed algorithm is implemented for the description logic EL^++. Experimental results on realworld ontologies show that, based on the proposed modularization method, the performance of ontology reasoning can be significantly improved.展开更多
To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction...To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.展开更多
To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity ne...To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity network-based reasoning to exploit the implicit similarity, and the feedback from the context to validate the similarity measures. A new similarity measure is also presented to construct concept similarity network, which scales the similarity using the relative depth of the least common super-concept between any two concepts. Subsequently, the graph theory, instead of predefined knowledge rules, is applied to perform the similarity network-based reasoning such that the knowledge acquisition can be avoided. The framework has been applied to text categorization and visualization of high dimensional data. Theory analysis and the experimental results validate the proposed framework.展开更多
This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system....This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system.Based on the FRPN model,a formal reasoning algorithm using the operators in max algebra was proposed to perform fuzzy reasoning automatically.The algorithm is consistent with the matrix equation expression method in the traditional Petri net.Its legitimacy and feasibility were testified through an example.展开更多
Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressio...An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH.展开更多
The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to th...The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts.展开更多
In order to realize the intelligent management of data mining (DM) domain knowledge, this paper presents an architecture for DM knowledge management based on ontology. Using ontology database, this architecture can ...In order to realize the intelligent management of data mining (DM) domain knowledge, this paper presents an architecture for DM knowledge management based on ontology. Using ontology database, this architecture can realize intelligent knowledge retrieval and automatic accomplishment of DM tasks by means of ontology services. Its key features include:①Describing DM ontology and meta-data using ontology based on Web ontology language (OWL).② Ontology reasoning function. Based on the existing concepts and relations, the hidden knowledge in ontology can be obtained using the reasoning engine. This paper mainly focuses on the construction of DM ontology and the reasoning of DM ontology based on OWL DL(s).展开更多
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
文摘The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
文摘In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special Education.Based on the cognitive style of deaf and hard-of-hearing students,we apply example induction,exhaustive induction,and mathematical induction to the teaching of Linear Algebra by utilizing specific course content.The aim is to design comprehensive teaching that caters to the cognitive style characteristics of deaf and hard-of-hearing students,strengthen their mathematical thinking styles such as quantitative thinking,algorithmic thinking,symbolic thinking,visual thinking,logical thinking,and creative thinking,and enhance the effectiveness of classroom teaching and learning outcomes in Linear Algebra for deaf and hard-of-hearing students.
文摘Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.
文摘presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.
基金The National Natural Science Foundation of China(No60403016),the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.
基金The National Natural Science Foundation of China(No60403016)the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.
基金The PhD Programs Foundation of Ministry of Education of China(No20096102120037)
文摘In order to optimize ontology reasoning, a novel boundary-based modular extraction method is introduced for ontologies in EL^++ description logics. The proposed module extraction method is capable of identifying relevant axioms in an ontology based on the notion of boundaries of symbols, with respect to a given reasoning task. Exactness of the method is ensured by discovering all axioms in the original ontology that may be directly or indirectly relevant to boundaries of symbols used in the reasoning task. Compactness of the method is ensured by boundary partition and intersection operation performed in the process of module extraction. The theoretical foundation and a practical algorithm for computing the proposed axiom-based modules are presented. The proposed algorithm is implemented for the description logic EL^++. Experimental results on realworld ontologies show that, based on the proposed modularization method, the performance of ontology reasoning can be significantly improved.
文摘To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.
基金The National Natural Science Foundation of China(No.60003019).
文摘To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity network-based reasoning to exploit the implicit similarity, and the feedback from the context to validate the similarity measures. A new similarity measure is also presented to construct concept similarity network, which scales the similarity using the relative depth of the least common super-concept between any two concepts. Subsequently, the graph theory, instead of predefined knowledge rules, is applied to perform the similarity network-based reasoning such that the knowledge acquisition can be avoided. The framework has been applied to text categorization and visualization of high dimensional data. Theory analysis and the experimental results validate the proposed framework.
文摘This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system.Based on the FRPN model,a formal reasoning algorithm using the operators in max algebra was proposed to perform fuzzy reasoning automatically.The algorithm is consistent with the matrix equation expression method in the traditional Petri net.Its legitimacy and feasibility were testified through an example.
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.
基金financially supported by the National Key Technology R&D Program in the 11th Five-Years Plan of China (No.2006BAE03A07)Fundamental Research Funds for the Central Universities (No.FRF-TP12-086A)
文摘An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z115)Science and Technology Program of the Ministry of Construction of China (Grant No. 2008-K8-2)+1 种基金Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2007042)Open Fund of State Key Lab of CAD&CG, Zhejiang University, China (Grant No. A0914)
文摘The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts.
基金the Natural Science Foundation of Chongqing (CSTC2005BB2190)
文摘In order to realize the intelligent management of data mining (DM) domain knowledge, this paper presents an architecture for DM knowledge management based on ontology. Using ontology database, this architecture can realize intelligent knowledge retrieval and automatic accomplishment of DM tasks by means of ontology services. Its key features include:①Describing DM ontology and meta-data using ontology based on Web ontology language (OWL).② Ontology reasoning function. Based on the existing concepts and relations, the hidden knowledge in ontology can be obtained using the reasoning engine. This paper mainly focuses on the construction of DM ontology and the reasoning of DM ontology based on OWL DL(s).