In order to research the microstructure of TiAl alloy and TiAl-mould reaction between TiAl and ceramic mould shells prepared with the low cost binder in investment casting, the ceramic mould shells were prepared with ...In order to research the microstructure of TiAl alloy and TiAl-mould reaction between TiAl and ceramic mould shells prepared with the low cost binder in investment casting, the ceramic mould shells were prepared with low cost binder and refractory materials. Using two kinds of casting methods (gravity casting and centrifugal casting), the titanium aluminum alloys with rare earth element (Ti-47.5Al-2Cr-2Nb-0.3Y and Ti-45Al-5Nb-0.3Y) were cast into the mould shells. The microstructures of investment casting titanium aluminum alloys were observed by optical microscope (OM). The distributions of elements of topping investment on the surfaces of titanium aluminum alloys castings were analyzed by the means of electron probe micro-analysis (EPMA), and the mechanical properties were studied. The results show that the microstructures of two kinds of titanium aluminum alloys are both lamella shape, and lamella is thin. The thickness of reaction and diffusing layer of Ti-47.5Al-2Cr-2Nb-0.3Y alloy is about 80μm, and that of Ti-45Al-5Nb-0.3Y is less than 30μm.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
文摘In order to research the microstructure of TiAl alloy and TiAl-mould reaction between TiAl and ceramic mould shells prepared with the low cost binder in investment casting, the ceramic mould shells were prepared with low cost binder and refractory materials. Using two kinds of casting methods (gravity casting and centrifugal casting), the titanium aluminum alloys with rare earth element (Ti-47.5Al-2Cr-2Nb-0.3Y and Ti-45Al-5Nb-0.3Y) were cast into the mould shells. The microstructures of investment casting titanium aluminum alloys were observed by optical microscope (OM). The distributions of elements of topping investment on the surfaces of titanium aluminum alloys castings were analyzed by the means of electron probe micro-analysis (EPMA), and the mechanical properties were studied. The results show that the microstructures of two kinds of titanium aluminum alloys are both lamella shape, and lamella is thin. The thickness of reaction and diffusing layer of Ti-47.5Al-2Cr-2Nb-0.3Y alloy is about 80μm, and that of Ti-45Al-5Nb-0.3Y is less than 30μm.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.