The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity...The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established. A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings, This production line can consistently make automobile gear castJngs Jn QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95% casting success rate.展开更多
The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inocula...The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroids graphite cast iron castings were discussed. Finally, two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.展开更多
This study aims to consolidate the surface of gray cast iron with aluminum deposition by developing a method that combines the preparation and surface treatment in a single operation. The effect of the wall thickness ...This study aims to consolidate the surface of gray cast iron with aluminum deposition by developing a method that combines the preparation and surface treatment in a single operation. The effect of the wall thickness of the castings on the microstructure of the formed layers was studied, and two thicknesses, 8 mm and 25 mm, were studied. The formation of a continuous and homogeneous rich aluminum layer on the surface of the cast iron was observed. The formed layer is composed of two successive zones identified as two proeutectoid phases FeAl+FeAl/FeAl2 and single-phase FeAl, which significantly increases the surface hardness. Furthermore, this change in surface composition makes it possible to reduce the mass of the immersed samples in a 1 M hydrochloric acid solution during different exposure times(1 to 4 days). Consequently, a clear improvement in the corrosion resistance of the treated layers is highlighted.展开更多
Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation softwar...Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.展开更多
The shrinkage defect of a ductile iron casting is attributed to the volume variations occurring in solidification, which consist of liquid contraction, solidification shrinkage, graphitization expansion, and mold cavi...The shrinkage defect of a ductile iron casting is attributed to the volume variations occurring in solidification, which consist of liquid contraction, solidification shrinkage, graphitization expansion, and mold cavity enlargement. Based on this understanding, a mathematical model for predicting the shrinkage defect of the casting is developed, in which the volume variations of the casting in soli- dification are numerically simulated, especially, the mold cavity enlargement is quantitatively calculated. Moreover, the reliability of the model is verified in production and experiment.展开更多
The objective of this paper is to review the factors influencing the formation of degenerated graphite layers on the surfaces of ductile iron castings for chemical resins-acid molding and core-making systems and how t...The objective of this paper is to review the factors influencing the formation of degenerated graphite layers on the surfaces of ductile iron castings for chemical resins-acid molding and core-making systems and how to reduce this defect. In the resin mold technique the sulphur in the P-toluol sulphonic acid (PTSA), usually used as the hardener, has been identified as one factor causing graphite degeneration at the metalmold interface. Less than 0.15% S in the mold (or even less than 0.07% S) can reduce the surface layer depth. Oxygen may also have an effect, especially for sulphur containing systems with turbulent flows in the mold, water-bearing no-bake binder systems, Mg-Silica reactions, or dross formation conditions. Despite the lower level of nitrogen in the iron melt after magnesium treatment (less than 90 ppm), nitrogen bearing resins have a profound effect on the frequency and severity of surface pinholes, but a limited influence on surface graphite degeneration.展开更多
文摘The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established. A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings, This production line can consistently make automobile gear castJngs Jn QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95% casting success rate.
基金The paper was financially supported by the National Natural Science Foundation of China(Grant No.59235102).
文摘The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroids graphite cast iron castings were discussed. Finally, two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.
文摘This study aims to consolidate the surface of gray cast iron with aluminum deposition by developing a method that combines the preparation and surface treatment in a single operation. The effect of the wall thickness of the castings on the microstructure of the formed layers was studied, and two thicknesses, 8 mm and 25 mm, were studied. The formation of a continuous and homogeneous rich aluminum layer on the surface of the cast iron was observed. The formed layer is composed of two successive zones identified as two proeutectoid phases FeAl+FeAl/FeAl2 and single-phase FeAl, which significantly increases the surface hardness. Furthermore, this change in surface composition makes it possible to reduce the mass of the immersed samples in a 1 M hydrochloric acid solution during different exposure times(1 to 4 days). Consequently, a clear improvement in the corrosion resistance of the treated layers is highlighted.
基金The reseach is supported by the TG 2000067208 project
文摘Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.
文摘The shrinkage defect of a ductile iron casting is attributed to the volume variations occurring in solidification, which consist of liquid contraction, solidification shrinkage, graphitization expansion, and mold cavity enlargement. Based on this understanding, a mathematical model for predicting the shrinkage defect of the casting is developed, in which the volume variations of the casting in soli- dification are numerically simulated, especially, the mold cavity enlargement is quantitatively calculated. Moreover, the reliability of the model is verified in production and experiment.
文摘The objective of this paper is to review the factors influencing the formation of degenerated graphite layers on the surfaces of ductile iron castings for chemical resins-acid molding and core-making systems and how to reduce this defect. In the resin mold technique the sulphur in the P-toluol sulphonic acid (PTSA), usually used as the hardener, has been identified as one factor causing graphite degeneration at the metalmold interface. Less than 0.15% S in the mold (or even less than 0.07% S) can reduce the surface layer depth. Oxygen may also have an effect, especially for sulphur containing systems with turbulent flows in the mold, water-bearing no-bake binder systems, Mg-Silica reactions, or dross formation conditions. Despite the lower level of nitrogen in the iron melt after magnesium treatment (less than 90 ppm), nitrogen bearing resins have a profound effect on the frequency and severity of surface pinholes, but a limited influence on surface graphite degeneration.