The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal...The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.展开更多
基金Project(05KJD6010110) supported by the Natural Science Foundation of the Education Commission of Jiangsu Province,ChinaProject(2005005) supported by the Science and Technology Foundation of the Environmental Protection Bureau of Jiangsu Province,China
文摘The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.