期刊文献+
共找到135,912篇文章
< 1 2 250 >
每页显示 20 50 100
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
1
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group Piled raft Pileesoileraft interaction Physical modeling cast-in-place concrete piles
下载PDF
Field study of plastic tube cast-in-place concrete pile
2
作者 陈永辉 曹德洪 +2 位作者 王新泉 杜海伟 张霆 《Journal of Central South University》 SCIE EI CAS 2008年第S2期195-202,共8页
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin... The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits. 展开更多
关键词 PLASTIC tube cast-in-place concrete PILE SOFT ground improvement pile-supported type reinforced EMBANKMENT CONSTRUCTION equipment CONSTRUCTION workmanship
下载PDF
Influence of the penetration of adjacent X-section cast-in-place concrete(XCC)pile on the existing XCC pile in sand
3
作者 Peng ZHOU Jianhui XU +3 位作者 Changjie XU Guangwei CAO Jie CUP Xuanming DING 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期557-572,共16页
A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the v... A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the variations in surrounding soil stress.The results showed that the bending patterns of existing XCC piles varied with penetration depth.The lateral response of the existing pile was sensitive to the change in relative density and pile geometry.For example,the bending moment of the existing pile increased along with these parameters.The development of the radial stressσ′r/σ′v0 of the soil around an existing pile showed different trends at various depths during the penetration of the adjacent pile.Moreover,the change in radial stress during the penetration of the XCC pile did not exhibit the“h/R effect”that was observed in the free-field soil,due to the shielding effect of the existing piles.The peak value of radial stressσ′r_max/σ′v0 decreased exponentially as the radial distance r/R increased.The attenuation ofσ′r_max/σ′v0 with r/R in the loose sand was faster than in the medium-dense or dense sands.Theσ′r_max/σ′v0 at the same soil location increased with the cross-section geometry parameter. 展开更多
关键词 X-section cast-in-place concrete(XCC)pile Test PENETRATION SAND Lateral response Radial stress
原文传递
Intelligent Small Sample Defect Detection of Concrete Surface Using Novel Deep Learning Integrating Improved YOLOv5 被引量:2
4
作者 Yongming Han Lei Wang +1 位作者 Youqing Wang Zhiqiang Geng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期545-547,共3页
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p... Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality. 展开更多
关键词 concrete integrating ALGORITHM
下载PDF
Utilization of Basalt Saw Mud as a Spherical Porous Functional Aggregate for the Preparation of Ordinary Structure Concrete 被引量:1
5
作者 周永祥 关青锋 +2 位作者 LENG Faguang WANG Jing LI Tianjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期364-375,共12页
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)... To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete. 展开更多
关键词 lightweight concrete civil concrete building basalt saw mud fly ash internal curing environmentally friendly
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
6
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration concrete target EROSION Projectile nose evolution model
下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
7
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 concrete dam Buttress dam SLIDING Shear strength concrete-rock interface Asperity inclination Asperity location
下载PDF
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
8
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 Permafrost engineering cast-in-place pile Artificial ground freezing Thermal performance.
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
9
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle concrete SEM NMR
下载PDF
Mesoscale Mechanical Properties and Influencing Factors of Concrete under Uniaxial Tension
10
作者 CHEN Tao LI Kungang XIAO Shiyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1156-1168,共13页
Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile... Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile loads were studied using statistical results.The results indicated that the entire process of damage and failure of specimens exhibited mainly two failure types:fracture patternsⅠandⅡ.Furthermore,the influences of the aggregate content ratio,aggregate shape,aggregate size,interfacial transition zone(ITZ)strength,and porosity ratio on the concrete specimens were analyzed.The numerical simulation results showed that the elastic modulus of the concrete specimens increased approximately linearly with the aggregate volume ratio but decreased linearly with the porosity and was not affected by the ITZ strength.The tensile strength decreased with the increases in the aggregate content and porosity of the sample,but increased linearly with the ITZ strength.In addition,the aggregate shape led to a difference in the tensile strength of the concrete. 展开更多
关键词 concrete mechanical behavior AGGREGATE interfacial transition zone PORE
下载PDF
Effects of Initial Defects on Effective Elastic Modulus of Concrete with Mesostructure
11
作者 LI Xinxin DU Cheng +2 位作者 LI Chengyu XU Yi GONG Wenping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1484-1495,共12页
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf... An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape. 展开更多
关键词 concrete initial defects effective elastic modulus mesostructure model FEM
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
12
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Non-dimensional analysis on blast wave propagation in foam concrete:Minimum thickness to avoid stress enhancement
13
作者 Ya Yang Xiangzhen Kong Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期30-46,共17页
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti... Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering. 展开更多
关键词 Foam concrete Blast wave propagation Non-dimensional analysis Stress enhancement
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
14
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Electrochemical Study of the Corrosion Inhibitory Capacity of Calcined Attapulgite in Reinforced Concrete Medium
15
作者 Malang Bodian Kinda Hannawi +3 位作者 Dame Keinde Modou Fall Aveline Darquennes Prince William Agbodjan 《Advances in Materials Physics and Chemistry》 CAS 2024年第5期76-94,共19页
The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main facto... The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%. 展开更多
关键词 ATTAPULGITE Electrochemical Methods INHIBITOR Reinforced concrete
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
16
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
Evaluation of internal void related defects in reinforced concrete slab using electromagnetic wave properties
17
作者 Minju Kang Jinyoung Hong +2 位作者 Taemin Lee Doyun Kim Hajin Choi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期525-535,共11页
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ... This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods. 展开更多
关键词 GPR concrete defect electromagnetic wave relative permittivity non-destructive testing(NDT)
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
18
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Experimental study on the size effect on the equation of state of concretes under shock loading
19
作者 Mei Li Jian Cui +2 位作者 Yanchao Shi Baijian Tang Xin Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期160-167,共8页
Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d... Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for. 展开更多
关键词 concrete Equation of state Size effect Shock wave Fly-plate impact test
下载PDF
Resilience-incorporated seismic risk assessment of precast concrete frames with“dry”connections
20
作者 Wu Chenhao Tang Yuchuan +1 位作者 Cao Xuyang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期403-425,共23页
A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o... A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF. 展开更多
关键词 precast concrete frame non-emulative precast system seismic resilience seismic risk functional recovery
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部