Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluent...Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.展开更多
The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered...The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.展开更多
BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote...BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote PFD recovery.AIM To analyze the use of hydrogen peroxide and silver ion disinfection for vaginal electrodes in conjunction with comprehensive rehabilitation therapy for postpartum women with PFD.METHODS A total of 59 women with PFD who were admitted to the hospital from May 2019 to July 2022 were divided into two groups:Control group(n=27)received comprehensive rehabilitation therapy and observation group(n=32)received intervention with pelvic floor biostimulation feedback instrument in addition to comprehensive rehabilitation therapy.The vaginal electrodes were disinfected with hydrogen peroxide and silver ion before treatment.Intervention for both groups was started 6 weeks postpartum,and rehabilitation lasted for 3 months.Pelvic floor muscle voltage,pelvic floor muscle strength,vaginal muscle voltage,vaginal muscle tone,pelvic floor function,quality of life,and incidence of postpartum PFD were compared between the two groups.RESULTS Before comprehensive rehabilitation treatment,basic data and pelvic floor function were not significantly different between the two groups.After treatment,the observation group showed significant improvements in the maximum voltage and average voltage of pelvic floor muscles,contraction time of type I and type II fibers,pelvic floor muscle strength,vaginal muscle tone,vaginal muscle voltage,and quality of life(GQOLI-74 reports),compared with the control group.The observation group had lower scores on the pelvic floor distress inventory(PFDI-20)and a lower incidence of postpartum PFD,indicating the effectiveness of the pelvic floor biostimulation feedback instrument in promoting the recovery of maternal pelvic floor function.CONCLUSION The combination of the pelvic floor biostimulation feedback instrument and comprehensive rehabilitation nursing can improve pelvic floor muscle strength,promote the recovery of vaginal muscle tone,and improve pelvic floor function and quality of life.The use of hydrogen peroxide and silver ion disinfectant demonstrated favorable antibacterial efficacy and is worthy of clinical application.展开更多
BACKGROUND Spastic pelvic floor syndrome(SPFS)is a refractory pelvic floor disease characterized by abnormal(uncoordinated)contractions of the external anal sphincter and puborectalis muscle during defecation,resultin...BACKGROUND Spastic pelvic floor syndrome(SPFS)is a refractory pelvic floor disease characterized by abnormal(uncoordinated)contractions of the external anal sphincter and puborectalis muscle during defecation,resulting in rectal emptation and obstructive constipation.The clinical manifestations of SPFS are mainly characterized by difficult defecation,often accompanied by a sense of anal blockage and drooping.Manual defecation is usually needed during defecation.From physical examination,it is commonly observed that the patient's anal muscle tension is high,and it is difficult or even impossible to enter with his fingers.AIM To investigate the characteristics of anorectal pressure and botulinum toxin A injection combined with biofeedback in treating pelvic floor muscle spasm syndrome.METHODS Retrospective analysis of 50 patients diagnosed with pelvic floor spasm syndrome.All patients underwent pelvic floor surface electromyography assessment,anorectal dynamics examination,botulinum toxin type A injection 100 U intramuscular injection,and two cycles of biofeedback therapy.RESULTS After the botulinum toxin A injection combined with two cycles of biofeedback therapy,the patient's postoperative resting and systolic blood pressure were significantly lower than before surgery(P<0.05).Moreover,the electromyography index of the patients in the resting stage and post-resting stages was significantly lower than before surgery(P<0.05).CONCLUSION Botulinum toxin A injection combined with biofeedback can significantly reduce pelvic floor muscle tension in treating pelvic floor muscle spasm syndrome.Anorectal manometry is an effective method to evaluate the efficacy of treatment objectively.However,randomized controlled trials are needed.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
The concentrations and seasonal dynamics of DOC in forest floors of monoculture plantations of Castanopsis kawakamii and Chinese fir (Cunninghamia lanceolata) were assessed in Sanming, Fujian, China (26°11′30...The concentrations and seasonal dynamics of DOC in forest floors of monoculture plantations of Castanopsis kawakamii and Chinese fir (Cunninghamia lanceolata) were assessed in Sanming, Fujian, China (26°11′30″N, 117°26′00″E). Forest floor samples were taken in January, April, July and October in 2002 and divided into undecomposed material (horizon Oi), partially decomposed organic material (horizon Oe), and fully decomposed organic material (horizon Oa). Upon collection. DOC concentrations of samples were analyzed by a High Temperature TOC. The results showed that the annual average DOC concentration of Chinese fir (1341.7 mg·kg^-1) in the forest floor was higher than that of Castanopsis kawakamii ( 1178.9 mg·kg^-1). Difference in DOC concentrations was observed among three horizons of the forest floor. DOC concentration of forest floor in the two forests was the highest in horizon Oe. Seasonal trends of DOC concentrations in different horizons of forest floors were similar and the maximal value occurred in autumn (or winter). The concentration and temporal change of DOC in studied forests were probably related to the variation in moisture, temperature, biological activity and quantity of organic matter in the forest floor.展开更多
A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken cha...A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.展开更多
Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams ...Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.展开更多
Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of co...Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results.展开更多
Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expen...Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40% - 50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20% - 30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30% - 40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.展开更多
Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to ...Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to understand the differences of each material composing each subsystem, and the connection types between the elements of each one of this subsystem. Some floors integrating lightweight elements without structural purposes, are broadly used in several countries in precast slabs. The predictions based on computer modelling for building systems can be influenced by the input parameters related to connections between the elements of the floor system. In building structures, the analysis of radiation due to element vibrations may be represented by wave propagation relationships as a one-dimensional system, a two-dimensional system or a three-dimensional solid. In these floors, the modelling of the interaction between elements can be basically a face, a line or a point connection. In addition, the choice of the connection type can determine the vibration transmission amongst all the floor elements. This study focuses on the differences that can be obtained in the induced vibration response due to an impact source on non-homogeneous slabs. It also presents some examples of modelling options for several floor systems, considering input parameters for different connection types.展开更多
According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical s...According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.展开更多
To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,...To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.展开更多
Maxillary sinus floor augmentation using lateral window and crestal technique is considered as predictable methods to increase the residual bone height;however,this surgery is commonly complicated by Schneiderian memb...Maxillary sinus floor augmentation using lateral window and crestal technique is considered as predictable methods to increase the residual bone height;however,this surgery is commonly complicated by Schneiderian membrane perforation,which is closely related to anatomical factors.This article aimed to assess anatomical factors on successful augmentation procedures.After review of the current evidence on sinus augmentation techniques,anatomical factors related to the stretching potential of Schneiderian membrane were assessed and a decision tree for the rational choice of surgical approaches was proposed.Schneiderian membrane perforation might occur when local tension exceeds its stretching potential,which is closely related to anatomical variations of the maxillary sinus.Choice of a surgical approach and clinical outcomes are influenced by the stretching potential of Schneiderian membrane.In addition to the residual bone height,clinicians should also consider the stretching potential affected by the membrane health condition,the contours of the maxillary sinus,and the presence of antral septa when evaluating the choice of surgical approaches and clinical outcomes.展开更多
A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in...A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure.展开更多
The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in ...The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in bins below draining floors. The major reason for high ammonia concentrations is the large amounts of stored and exposed manure. The possibility to reduce ammonia release by reducing the amount of stored manure in bins in floor housing systems for laying hens has therefore been investigated. Investigations were carried out in a climate chamber equipped with a floor housing system with a manure removal system with two parallel motor driven conveyors placed below an elevated draining floor. The conditions when manure is stored in bins below draining floors were simulated by storing manure on the conveyors for several days at constant ventilation rates and temperatures. The investigations clearly showed that storage of manure in the bin caused a rapid increase in ammonia concentrations. After about 7 days storage of manure in the bin the ammonia concentration exceeded the hygienic threshold limit values. It can be concluded that long time storage of manure in storage bins below draining floors should not be recommended. It was possible to maintain the ammonia concentration below the hygienic threshold limit values when manure was removed frequently with conveyors. Floor housing systems for laying hens with elevated draining floors should therefore be equipped with manure removal systems that enable frequent removal of manure in the bins.展开更多
从欧洲和俄罗斯的原料,到中国大陆的规模生产,再到进入发达市场的销售网络,来自中国台湾的企业家曾志文领导 China floors 这条运作全球的地板价值链。无怪乎在他的话语中“评估”这个词汇如此高频出现,链条中无论哪一小段出现危机都将...从欧洲和俄罗斯的原料,到中国大陆的规模生产,再到进入发达市场的销售网络,来自中国台湾的企业家曾志文领导 China floors 这条运作全球的地板价值链。无怪乎在他的话语中“评估”这个词汇如此高频出现,链条中无论哪一小段出现危机都将波及企业整体——展开更多
The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art desig...The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.展开更多
We are placing more and more emphasis on the design of industrial floors when designing the structure of buildings. Currently there are only a few approved designing guidelines that practicing engineers can use to eas...We are placing more and more emphasis on the design of industrial floors when designing the structure of buildings. Currently there are only a few approved designing guidelines that practicing engineers can use to easily design industrial floors. Rather the best practice is that the manufacturers of certain products (concrete fibre reinforcement, dilatation joints) carry out the more or less professional designing. In addition, there are numerous incurring questions in connection with applying the internationally approved guidelines in terms of applicability and reliability. Our paper is based on years of experience in designing industrial floors. In the first part the main guidelines, their characteristics and opportunities of application are discussed. In the second part we take a closer look at the most common TR34 British guideline, presenting its most significant designing formulas, which support engineering practitioners in carrying out the design of industrial floors on their own. In the third part we demonstrate advanced finite element analyses, comparing results with real sized experiments and with results of the guidelines.展开更多
PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, f...PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, floating floors systems are composed of two layers above the slab: a resilient layer and, above this, a rigid layer of cement matrix that works as a subfloor. This research aims to evaluate the incorporation of PVC and PU skin waste in the resilient layer of the floating floor, for impact noise insulation. It was conducted physical, mechanical and morphological tests in the composite, as SEM (scanning electron microscopy), determination of compressive creep, and impact noise test to evaluate the absorption capacity of the floor system over time. Furthermore, experimental results were compared with theoretical studies. These correlations may assist in understanding the behavior of impact noise damping and its relation to the size of the samples.展开更多
基金supported by the project"OKTAEDR-partnership and building network."Project registration number is cz.1.07./2.4.00/31.0012.
文摘Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.
基金supported by the Key Program of National Natural Science Foundation of China(No.U23A202579)the National Natural Science Foundation of China(No.42277187,42007276,41972297)the Natural Science Foundation of Hebei Province(No.D2021202002)。
文摘The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.
文摘BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote PFD recovery.AIM To analyze the use of hydrogen peroxide and silver ion disinfection for vaginal electrodes in conjunction with comprehensive rehabilitation therapy for postpartum women with PFD.METHODS A total of 59 women with PFD who were admitted to the hospital from May 2019 to July 2022 were divided into two groups:Control group(n=27)received comprehensive rehabilitation therapy and observation group(n=32)received intervention with pelvic floor biostimulation feedback instrument in addition to comprehensive rehabilitation therapy.The vaginal electrodes were disinfected with hydrogen peroxide and silver ion before treatment.Intervention for both groups was started 6 weeks postpartum,and rehabilitation lasted for 3 months.Pelvic floor muscle voltage,pelvic floor muscle strength,vaginal muscle voltage,vaginal muscle tone,pelvic floor function,quality of life,and incidence of postpartum PFD were compared between the two groups.RESULTS Before comprehensive rehabilitation treatment,basic data and pelvic floor function were not significantly different between the two groups.After treatment,the observation group showed significant improvements in the maximum voltage and average voltage of pelvic floor muscles,contraction time of type I and type II fibers,pelvic floor muscle strength,vaginal muscle tone,vaginal muscle voltage,and quality of life(GQOLI-74 reports),compared with the control group.The observation group had lower scores on the pelvic floor distress inventory(PFDI-20)and a lower incidence of postpartum PFD,indicating the effectiveness of the pelvic floor biostimulation feedback instrument in promoting the recovery of maternal pelvic floor function.CONCLUSION The combination of the pelvic floor biostimulation feedback instrument and comprehensive rehabilitation nursing can improve pelvic floor muscle strength,promote the recovery of vaginal muscle tone,and improve pelvic floor function and quality of life.The use of hydrogen peroxide and silver ion disinfectant demonstrated favorable antibacterial efficacy and is worthy of clinical application.
文摘BACKGROUND Spastic pelvic floor syndrome(SPFS)is a refractory pelvic floor disease characterized by abnormal(uncoordinated)contractions of the external anal sphincter and puborectalis muscle during defecation,resulting in rectal emptation and obstructive constipation.The clinical manifestations of SPFS are mainly characterized by difficult defecation,often accompanied by a sense of anal blockage and drooping.Manual defecation is usually needed during defecation.From physical examination,it is commonly observed that the patient's anal muscle tension is high,and it is difficult or even impossible to enter with his fingers.AIM To investigate the characteristics of anorectal pressure and botulinum toxin A injection combined with biofeedback in treating pelvic floor muscle spasm syndrome.METHODS Retrospective analysis of 50 patients diagnosed with pelvic floor spasm syndrome.All patients underwent pelvic floor surface electromyography assessment,anorectal dynamics examination,botulinum toxin type A injection 100 U intramuscular injection,and two cycles of biofeedback therapy.RESULTS After the botulinum toxin A injection combined with two cycles of biofeedback therapy,the patient's postoperative resting and systolic blood pressure were significantly lower than before surgery(P<0.05).Moreover,the electromyography index of the patients in the resting stage and post-resting stages was significantly lower than before surgery(P<0.05).CONCLUSION Botulinum toxin A injection combined with biofeedback can significantly reduce pelvic floor muscle tension in treating pelvic floor muscle spasm syndrome.Anorectal manometry is an effective method to evaluate the efficacy of treatment objectively.However,randomized controlled trials are needed.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
基金This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT)
文摘The concentrations and seasonal dynamics of DOC in forest floors of monoculture plantations of Castanopsis kawakamii and Chinese fir (Cunninghamia lanceolata) were assessed in Sanming, Fujian, China (26°11′30″N, 117°26′00″E). Forest floor samples were taken in January, April, July and October in 2002 and divided into undecomposed material (horizon Oi), partially decomposed organic material (horizon Oe), and fully decomposed organic material (horizon Oa). Upon collection. DOC concentrations of samples were analyzed by a High Temperature TOC. The results showed that the annual average DOC concentration of Chinese fir (1341.7 mg·kg^-1) in the forest floor was higher than that of Castanopsis kawakamii ( 1178.9 mg·kg^-1). Difference in DOC concentrations was observed among three horizons of the forest floor. DOC concentration of forest floor in the two forests was the highest in horizon Oe. Seasonal trends of DOC concentrations in different horizons of forest floors were similar and the maximal value occurred in autumn (or winter). The concentration and temporal change of DOC in studied forests were probably related to the variation in moisture, temperature, biological activity and quantity of organic matter in the forest floor.
基金supported by the National Natural Science Foundation of China (Nos. 51404013 and 51674008)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining at the China University of Mining and Technology (No. 13KF01)the Natural Science Foundation of Anhui Province (Nos. 1508085ME77 and 1508085QE89)
文摘A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.
基金supports from the Natural Science Foundation of Shandong Province (No.Y2007F46)the Doctor Disciplines Special Scientific Research Foundation of Ministry of Education (No.20070424005)+1 种基金China Coal Industry Association Science and Technology Research Instructive Plan (No.MTKJ2009-290) the National Natural Science Foundation of China (No.50539080)
文摘Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.
基金Projects 50874103 supported by the National Natural Science Foundation of China2006CB202210 by the National Basic Research Program of China+1 种基金BK2008135 by the Natural Science Foundation of Jiangsu Provincethe Qing-lan Project of Jiangsu Province
文摘Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results.
文摘Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40% - 50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20% - 30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30% - 40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.
文摘Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to understand the differences of each material composing each subsystem, and the connection types between the elements of each one of this subsystem. Some floors integrating lightweight elements without structural purposes, are broadly used in several countries in precast slabs. The predictions based on computer modelling for building systems can be influenced by the input parameters related to connections between the elements of the floor system. In building structures, the analysis of radiation due to element vibrations may be represented by wave propagation relationships as a one-dimensional system, a two-dimensional system or a three-dimensional solid. In these floors, the modelling of the interaction between elements can be basically a face, a line or a point connection. In addition, the choice of the connection type can determine the vibration transmission amongst all the floor elements. This study focuses on the differences that can be obtained in the induced vibration response due to an impact source on non-homogeneous slabs. It also presents some examples of modelling options for several floor systems, considering input parameters for different connection types.
基金Financial support for this work was provided by the National High-Tech Research and Development Program of China (No. 2012AA062101)the Priority Academic Development Program of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu Province (No. CXZZ12_0950)
文摘According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.
基金This study was funded by Co-Innovation Center of Efficient Processing and Utilization of Forest Resources(Nanjing Forestry University,Nanjing,210037,China).
文摘To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.
基金supported by grants from:1.Young Clinical Research Fund of the Chinese Stomatological Association[grant number CSA-SIS2022-19]Sichuan Science and Technology Program:[grant number 2023NSFSC0567].
文摘Maxillary sinus floor augmentation using lateral window and crestal technique is considered as predictable methods to increase the residual bone height;however,this surgery is commonly complicated by Schneiderian membrane perforation,which is closely related to anatomical factors.This article aimed to assess anatomical factors on successful augmentation procedures.After review of the current evidence on sinus augmentation techniques,anatomical factors related to the stretching potential of Schneiderian membrane were assessed and a decision tree for the rational choice of surgical approaches was proposed.Schneiderian membrane perforation might occur when local tension exceeds its stretching potential,which is closely related to anatomical variations of the maxillary sinus.Choice of a surgical approach and clinical outcomes are influenced by the stretching potential of Schneiderian membrane.In addition to the residual bone height,clinicians should also consider the stretching potential affected by the membrane health condition,the contours of the maxillary sinus,and the presence of antral septa when evaluating the choice of surgical approaches and clinical outcomes.
基金Cultivation Fund of the Key Grant Scientifi c and Technical Innovation Project, Ministry of Education of China Under Grant No.704003
文摘A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure.
文摘The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in bins below draining floors. The major reason for high ammonia concentrations is the large amounts of stored and exposed manure. The possibility to reduce ammonia release by reducing the amount of stored manure in bins in floor housing systems for laying hens has therefore been investigated. Investigations were carried out in a climate chamber equipped with a floor housing system with a manure removal system with two parallel motor driven conveyors placed below an elevated draining floor. The conditions when manure is stored in bins below draining floors were simulated by storing manure on the conveyors for several days at constant ventilation rates and temperatures. The investigations clearly showed that storage of manure in the bin caused a rapid increase in ammonia concentrations. After about 7 days storage of manure in the bin the ammonia concentration exceeded the hygienic threshold limit values. It can be concluded that long time storage of manure in storage bins below draining floors should not be recommended. It was possible to maintain the ammonia concentration below the hygienic threshold limit values when manure was removed frequently with conveyors. Floor housing systems for laying hens with elevated draining floors should therefore be equipped with manure removal systems that enable frequent removal of manure in the bins.
文摘The design of industrial floors will be presented in this paper. In the first part of this article the calculation methods of the TR34 British guideline will be discussed. In the second part the state of the art design methods using advanced finite element methods will be presented. The design itself may seem as slow considering the actual computer efficiency, however comparing the results to theoretical analysis and to designing methods, precision and economical nature of the method can be justified. A large number of foreign industrial floor designs were made by this method;some of them will be shown as reference at the end of the article.
文摘We are placing more and more emphasis on the design of industrial floors when designing the structure of buildings. Currently there are only a few approved designing guidelines that practicing engineers can use to easily design industrial floors. Rather the best practice is that the manufacturers of certain products (concrete fibre reinforcement, dilatation joints) carry out the more or less professional designing. In addition, there are numerous incurring questions in connection with applying the internationally approved guidelines in terms of applicability and reliability. Our paper is based on years of experience in designing industrial floors. In the first part the main guidelines, their characteristics and opportunities of application are discussed. In the second part we take a closer look at the most common TR34 British guideline, presenting its most significant designing formulas, which support engineering practitioners in carrying out the design of industrial floors on their own. In the third part we demonstrate advanced finite element analyses, comparing results with real sized experiments and with results of the guidelines.
文摘PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, floating floors systems are composed of two layers above the slab: a resilient layer and, above this, a rigid layer of cement matrix that works as a subfloor. This research aims to evaluate the incorporation of PVC and PU skin waste in the resilient layer of the floating floor, for impact noise insulation. It was conducted physical, mechanical and morphological tests in the composite, as SEM (scanning electron microscopy), determination of compressive creep, and impact noise test to evaluate the absorption capacity of the floor system over time. Furthermore, experimental results were compared with theoretical studies. These correlations may assist in understanding the behavior of impact noise damping and its relation to the size of the samples.