In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding...In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.展开更多
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c...In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.展开更多
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
A systematic method was proposed to estimate the occurrence probability of defective piles(OPDP) from a site according to quality assurance inspection. The OPDP was firstly suggested as the criterion to weight the per...A systematic method was proposed to estimate the occurrence probability of defective piles(OPDP) from a site according to quality assurance inspection. The OPDP was firstly suggested as the criterion to weight the performance of a pile foundation. Its prior distribution and updating distribution were deduced to follow Beta distributions. To calibrate the OPDP, a dynamic estimation model was established according to the relationships between prior mean and variance and updating mean and variance. Finally, a reliability-control method dealing with uncertainties arising from quality assurance inspection was formalized to judge whether all the bored piles from a site can be accepted. It is exemplified that the OPDP can be substantially improved when more definite prior information and sampling formation become available. For the example studied herein, the Bayesian estimator of updating variance for OPDP is reduced from 0.0037 to 0.0014 for the first inspection, from 0.0014 to 0.0009 for the second inspection, and with less uncertainty by incorporating experience information.展开更多
This paper presents some aspects of the load-settlement behavior for large diameter bored piles using four different international codes, namely: ECP 202 [1], DIN 4014 [2], AASHTO [3] and French Code [4]. Ultimate cap...This paper presents some aspects of the load-settlement behavior for large diameter bored piles using four different international codes, namely: ECP 202 [1], DIN 4014 [2], AASHTO [3] and French Code [4]. Ultimate capacities for 38 pile load tests founded in realistic multi-layered soils in Delta and Port Saidareas atEgyptare evaluated using modified Chin (1970) method and compared to ultimate load predictions obtained by the aforementioned codes. Many statistical analyses were conducted on the total pile loads and individual contributions of tip and skin resistances. Based on code predictions of ultimate pile loads, an empirical modified load-settlement model is proposed. This model will simplify to a great extent the analysis of piled-raft systems as it can effortlessly predict pile settlement due to the load on pile itself. Comparisons showed that the pile load test is an irreplaceable process for determining the ultimate capacity of piles.展开更多
A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypi...A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.展开更多
Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering case...Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering cases,the effectiveness of the analogue test method is verified by comparing it with the traditional anchor pile method and self-balanced method.Taking the self-balanced test of the bridge pile foundation in the Songhua River as an example,the conversion factor of sandy soil and weathered mudstone are confirmed by the analogue test method.The results show that the conversion factor of sandy soil and weathered mudstone in the Songhua River area should consider the geological conditions and the construction technology,etc.The standard values are relatively conservative.It is suggested that the engineering application should be properly revised.The recommended range of the conversion factor of sandy soil in this area is 0.65 to 0.85,and that of weathered mudstone is 1.0.展开更多
The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soil...The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soils was carried out thoroughly in the basis of field performance data of 10 fully instrumented large diameter bored piles (LDBPs) used as the bridge foundation. The undrained strength index μ in term of cohesive soils was brought forward in allusion to the cohesive soils in the consistence plastic state, and can effectively combine the friction angle and the cohesion of cohesive soils in undrained condition. And that the classical ' α method' was modified much in effect to predict the pile shaft skin friction of LDBPs in cohesive soils. Furthermore, the approach of standard penetration test (SPT) N value used to estimate the pile shaft skin ultimate friction was analyzed, and the calculating formulae were established for LDBPs in clay and silt clay respectively.展开更多
The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, q...The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, quality of concrete, expertise of the construction staff, the ground conditions and the pile geometry. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests are conducted. Due to practical and time constraints, it is not possible to load the pile up-to failure. In this study, field pile load test data is analyzed to estimate the ultimate load for friction piles. The analysis is based on three pile load test results. The tests are conducted at the site of The Cultural and Recreational Complex project in Port Said, Egypt. Three pile load tests are performed on bored piles of 900 mm diameter and 50 m length. Geotechnical investigations at the site are carried out to a maximum depth of 60 m. Ultimate capacities of piles are determined according to different methods including Egyptian Code of practice (2005), Tan-gent-tangent, Hansen (1963), Chin (1970), Ahmed and Pise (1997) and Decourt (1999). It was concluded that approxi- mately 8% of the ultimate load is resisted by bearing at the base of the pile, and that up to 92% of the load is resisted by friction along the shaft. Based on a comparison of pile capacity predictions using different method, recommendations are made. A new method is proposed to calculate the ultimate capacity of the pile from pile load test data. The ultimate capacity of the bored piles predicted using the proposed method appears to be reliable and compares well to different available methods.展开更多
Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of l...Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of load bearing capacity of a few selected cast-in-situ RCC (reinforced cement concrete) pile groups without demolishing the existing buildings. In this test, the column bottom of an existing building was removed by the help of scaffolding and after that a frame system consisting tension piles and hollow beam was constructed over the pile cap of the to be tested pile group. The load was tested by the help of hydraulic jack system and the constructed frame system. This paper contains the detailed plan, arrangement and method of the test with illustrations. The deflection and loading data analysis is also included which was performed to determine the outcome of the test. Through this test method the appropriate assessment of capacity of pile group of existing building could be done successfully and in result the structure could be saved by only super structure retrofitting.展开更多
文摘In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.
文摘In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(2013BS010) supported by Henan University of Technology Fund for High-level Talent,China
文摘A systematic method was proposed to estimate the occurrence probability of defective piles(OPDP) from a site according to quality assurance inspection. The OPDP was firstly suggested as the criterion to weight the performance of a pile foundation. Its prior distribution and updating distribution were deduced to follow Beta distributions. To calibrate the OPDP, a dynamic estimation model was established according to the relationships between prior mean and variance and updating mean and variance. Finally, a reliability-control method dealing with uncertainties arising from quality assurance inspection was formalized to judge whether all the bored piles from a site can be accepted. It is exemplified that the OPDP can be substantially improved when more definite prior information and sampling formation become available. For the example studied herein, the Bayesian estimator of updating variance for OPDP is reduced from 0.0037 to 0.0014 for the first inspection, from 0.0014 to 0.0009 for the second inspection, and with less uncertainty by incorporating experience information.
文摘This paper presents some aspects of the load-settlement behavior for large diameter bored piles using four different international codes, namely: ECP 202 [1], DIN 4014 [2], AASHTO [3] and French Code [4]. Ultimate capacities for 38 pile load tests founded in realistic multi-layered soils in Delta and Port Saidareas atEgyptare evaluated using modified Chin (1970) method and compared to ultimate load predictions obtained by the aforementioned codes. Many statistical analyses were conducted on the total pile loads and individual contributions of tip and skin resistances. Based on code predictions of ultimate pile loads, an empirical modified load-settlement model is proposed. This model will simplify to a great extent the analysis of piled-raft systems as it can effortlessly predict pile settlement due to the load on pile itself. Comparisons showed that the pile load test is an irreplaceable process for determining the ultimate capacity of piles.
基金The Natural Science Foundation of Hubei Province(No.2007ABA094)
文摘A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.
基金The National Key Research and Development Program(No.2017YFC0703408)the National Natural Science Foundation of China(No.51478109,51678145,51878160)
文摘Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering cases,the effectiveness of the analogue test method is verified by comparing it with the traditional anchor pile method and self-balanced method.Taking the self-balanced test of the bridge pile foundation in the Songhua River as an example,the conversion factor of sandy soil and weathered mudstone are confirmed by the analogue test method.The results show that the conversion factor of sandy soil and weathered mudstone in the Songhua River area should consider the geological conditions and the construction technology,etc.The standard values are relatively conservative.It is suggested that the engineering application should be properly revised.The recommended range of the conversion factor of sandy soil in this area is 0.65 to 0.85,and that of weathered mudstone is 1.0.
文摘The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soils was carried out thoroughly in the basis of field performance data of 10 fully instrumented large diameter bored piles (LDBPs) used as the bridge foundation. The undrained strength index μ in term of cohesive soils was brought forward in allusion to the cohesive soils in the consistence plastic state, and can effectively combine the friction angle and the cohesion of cohesive soils in undrained condition. And that the classical ' α method' was modified much in effect to predict the pile shaft skin friction of LDBPs in cohesive soils. Furthermore, the approach of standard penetration test (SPT) N value used to estimate the pile shaft skin ultimate friction was analyzed, and the calculating formulae were established for LDBPs in clay and silt clay respectively.
文摘The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, quality of concrete, expertise of the construction staff, the ground conditions and the pile geometry. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests are conducted. Due to practical and time constraints, it is not possible to load the pile up-to failure. In this study, field pile load test data is analyzed to estimate the ultimate load for friction piles. The analysis is based on three pile load test results. The tests are conducted at the site of The Cultural and Recreational Complex project in Port Said, Egypt. Three pile load tests are performed on bored piles of 900 mm diameter and 50 m length. Geotechnical investigations at the site are carried out to a maximum depth of 60 m. Ultimate capacities of piles are determined according to different methods including Egyptian Code of practice (2005), Tan-gent-tangent, Hansen (1963), Chin (1970), Ahmed and Pise (1997) and Decourt (1999). It was concluded that approxi- mately 8% of the ultimate load is resisted by bearing at the base of the pile, and that up to 92% of the load is resisted by friction along the shaft. Based on a comparison of pile capacity predictions using different method, recommendations are made. A new method is proposed to calculate the ultimate capacity of the pile from pile load test data. The ultimate capacity of the bored piles predicted using the proposed method appears to be reliable and compares well to different available methods.
文摘Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of load bearing capacity of a few selected cast-in-situ RCC (reinforced cement concrete) pile groups without demolishing the existing buildings. In this test, the column bottom of an existing building was removed by the help of scaffolding and after that a frame system consisting tension piles and hollow beam was constructed over the pile cap of the to be tested pile group. The load was tested by the help of hydraulic jack system and the constructed frame system. This paper contains the detailed plan, arrangement and method of the test with illustrations. The deflection and loading data analysis is also included which was performed to determine the outcome of the test. Through this test method the appropriate assessment of capacity of pile group of existing building could be done successfully and in result the structure could be saved by only super structure retrofitting.