期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
1
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 Heavy section ductile cast iron Alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron 被引量:4
2
作者 Song Liang Guo Erjun Tan Changlong 《China Foundry》 SCIE CAS 2014年第2期125-131,共7页
To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the ... To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture. 展开更多
关键词 heavy section ductile cast iron Bi addition cooling rate graphite morphology mechanical properties
下载PDF
Effect of microscopic pore structures on ultrasonic velocity in tight sandstone with different fluid saturation 被引量:1
3
作者 Jian-Yong Xie Jun-Jie Zhang +4 位作者 Wei Xiang Yan-Ping Fang Ya-Juan Xue Jun-Xing Cao Ren-Fei Tian 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2683-2694,共12页
Microcosmic details of pore structure are the essential factors affecting the elastic properties of tight sandstone reservoirs,while the relationships in between are still incompletely clear due to the fact that quant... Microcosmic details of pore structure are the essential factors affecting the elastic properties of tight sandstone reservoirs,while the relationships in between are still incompletely clear due to the fact that quantitative or semi-quantitative experiments are hard to achieve.Here,three sets of tight sandstone samples from the Junggar Basin are selected elaborately based on casting thin sections,XRD detection,and petro-physical measurement,and each set is characterized by a single varied microcosmic factor(pore connectedness,pore type,and grain size)of the pore structure.An ultrasonic pulse transmission technique is conducted to study the response of elastic properties to the varied microcosmic details of pore structure in the situation of different pore fluid(gas,brine,and oil)saturation and confining pressure.Observations show samples with less connectedness,inter-granular dominant pores,and smaller grain size showed greater velocities in normal conditions.Vpis more sensitive to the variations of pore type,while Vsis more sensitive to the variations of grain size.Samples with better connectedness at fluid saturation(oil or brine)show greater sensitivity to the confining pressure than those with gas saturation with a growth rate of 6.9%-11.9%,and the sensitivity is more likely controlled by connectedness.The pore types(inter-granular or intra-granular)can be distinguished by the sensitivity of velocities to the variation of pore fluid at high confining pressure(>60 MPa).The samples with small grain sizes tend to be more sensitive to the variations of confining pressure.With this knowledge,we can semi-quantitatively distinguish the complex pore structures with different fluids by the variation of elastic properties,which can help improve the precision of seismic reservoir prediction for tight sandstone reservoirs. 展开更多
关键词 Tight sandstone Pore structure casting thin section Ultrasonic measurement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部