Deformation of casting during the solidification process has puzzled many engineers and scientists for years. In order to attain the goal of near-net forming by casting, numerical simulation is a powerful tool. Tradit...Deformation of casting during the solidification process has puzzled many engineers and scientists for years. In order to attain the goal of near-net forming by casting, numerical simulation is a powerful tool. Traditional methods compute the thermal stress of both the casting and the mold. This method suffers the problem of massive calculation and failure of convergence. This paper proposes an improved Mold Surface Element Method, the main idea of which is to use the surface elements instead of body elements to express the interactions between the casting and the mold. The proposed method shows a high computation efficiency and provides satisfactory precision for engineering. Two practical casting products were used to verify the proposed method. The simulated results agree well with those observed in practical products. The proposed method is believed to benefit production practice and to provide theoretical guidance.展开更多
The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried ...The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively.展开更多
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229)the National Science&Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)Natural Science Foundation of Hubei Province,China(2011CDB279)
文摘Deformation of casting during the solidification process has puzzled many engineers and scientists for years. In order to attain the goal of near-net forming by casting, numerical simulation is a powerful tool. Traditional methods compute the thermal stress of both the casting and the mold. This method suffers the problem of massive calculation and failure of convergence. This paper proposes an improved Mold Surface Element Method, the main idea of which is to use the surface elements instead of body elements to express the interactions between the casting and the mold. The proposed method shows a high computation efficiency and provides satisfactory precision for engineering. Two practical casting products were used to verify the proposed method. The simulated results agree well with those observed in practical products. The proposed method is believed to benefit production practice and to provide theoretical guidance.
基金supported by National Natural Science Foundation of China(51674168)Shenyang City Application Basic Research Foundation(F14-231-1-23)
文摘The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively.