期刊文献+
共找到8,135篇文章
< 1 2 250 >
每页显示 20 50 100
Thin-walled and large-sized magnesium alloy die castings for passenger car cockpit:Application,materials,and manufacture
1
作者 Lei Zhan Yu-meng Sun +6 位作者 Yang Song Chun-hua Kong Kai Ma Bai-xin Dong Hong-yu Yang Shi-li Shu Feng Qiu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期525-545,共21页
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo... In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components. 展开更多
关键词 Mg alloys thin wall large size automotive part die casting
下载PDF
I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images
2
作者 Ming-jun Hou Hao Dong +7 位作者 Xiao-yuan Ji Wen-bing Zou Xiang-sheng Xia Meng Li Ya-jun Yin Bao-hui Li Qiang Chen Jian-xin Zhou 《China Foundry》 SCIE EI CAS CSCD 2024年第3期239-247,共9页
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H... The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks. 展开更多
关键词 light alloy casting flaw detection image generator DISCRIMINATOR comprehensive evaluation index
下载PDF
Research progress on refractory composition and deformability of shell molds for TiAl alloy castings 被引量:6
3
作者 Chun-ling Bao Shuang-qi Zhang +3 位作者 Yu-yan Ren You-wei Zhang Hua-sheng Xie Jun Zhao 《China Foundry》 SCIE 2018年第1期1-10,共10页
At present, most TiAl components are produced by an investment casting process. Environmental and economic pressures have, however, resulted in a need for the industry to improve the current casting quality, reduce ma... At present, most TiAl components are produced by an investment casting process. Environmental and economic pressures have, however, resulted in a need for the industry to improve the current casting quality, reduce manufacturing costs and explore new markets for the process. Currently, the main problems for investment casting of TiAl alloys are cracks, porosities, and surface defects. To solve these problems, many studies have been conducted around the world, and it is found that casting defects can be reduced by improving composition and properties of the shell molds. It is important to make a summary for the related research progress for quality improvement of TiAl castings. So, the development on refractory composition of shell molds for TiAl alloy investment castings was reviewed, and research progress on deformability of shell mold for TiAl alloy castings both at home and abroad in recent years was introduced. The existing methods for deformability characterization and methods for improving the deformability of shell molds were summarized and discussed. The updated advancement in numerical simulation of TiAl alloy investment casting was presented, showing the necessity for considering the deformability of shell mold during simulation. Finally, possible research points for future studies on deformability of shell mold for TiAl alloy investment casting were proposed. 展开更多
关键词 TiAl based alloys investment casting shell mold DEFORMABILITY
下载PDF
Reduction of shrinkage porosities in aluminum alloy castings by external pressure fluctuation under gravity field 被引量:2
4
作者 Shi-ping Wu Ru-jia Wang +2 位作者 Ye Wang Wei Chen Ze-sheng Ji 《China Foundry》 SCIE 2018年第5期372-377,共6页
A novel method to improve the feeding capacity of ZL205 A alloy castings by pressure fluctuation during its solidification process under gravity field was proposed. The experiments were done in the graphite mould by a... A novel method to improve the feeding capacity of ZL205 A alloy castings by pressure fluctuation during its solidification process under gravity field was proposed. The experiments were done in the graphite mould by applying the fluctuation pressure at the top of the riser. Results of the X-ray inspection of castings and simulations of flow velocity of alloy melt and temperature field show that the new method can effectively improve the feeding capacity and significantly reduce the shrinkage in the castings. The mechanism of improving the feeding capacity by pressure fluctuation is that the fluctuating pressure can make the ZL205 A alloy melt form a vibration wave in the melt. The vibration wave can intensify the convection of the melt, and therefore, break down the barrage from the feeding channel which forms during the solidification process of the ZL205 A alloy, improving the feeding capacity. 展开更多
关键词 FLUCTUATION pressure SHRINKAGE POROSITY ZL205A alloy gravity castING
下载PDF
Eliminating shrinkage defects and improving mechanical performance of large thin-walled ZL205A alloy castings by coupling travelling magnetic fields with sequential solidification 被引量:6
5
作者 Lei LUO Hong-ying XIA +5 位作者 Liang-shun LUO Yan-qing SU Chao-jun CAI Liang WANG Jing-jie GUO Heng-zhi FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期865-877,共13页
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa... ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture. 展开更多
关键词 ZL205A alloys large thin-walled alloy castings travelling magnetic fields sequential solidification shrinkage defects mechanical performance
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
6
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy alloyING microstructure mechanical properties heat treatment
下载PDF
Numerical Simulation of Microporosity Evolution of Aluminum Alloy Castings 被引量:2
7
作者 Shuyong DONG, Shoumei XIONG and Baicheng LIUDepartment of Mechanical Engineering, Tsinghua University, Beijing 100084, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期23-26,共4页
A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as ... A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as grain structure evolution, solidification shrinkage, interdendritic fluid flow and formation and growth of pores during solidification processes. The nucleation and growth of grains were modeled with a cellular automaton method that utilizes the results from a macro scale modeling of the solidification process. Experiments were made to validate the proposed models. The calculated results of aluminum alloy castings agreed with the experimental measurements. 展开更多
关键词 Numerical simulation Microporosity evolution Aluminum alloy castings
下载PDF
Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy
8
作者 Xueli He Shengkun Lv +4 位作者 Ruifeng Dou Yanying Zhang Junsheng Wang Xunliang Liu Zhi Wen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2873-2895,共23页
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr... Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend. 展开更多
关键词 Centrifugal casting Al-Cu alloy MICROSTRUCTURE hot tearing SIMULATION
下载PDF
Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature
9
作者 Binghui Hu Yu Lei +3 位作者 Hang Li Ziyi Wang Chao Yu Guozheng Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1115-1125,共11页
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R... The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING multiaxial loading loading path stress level
下载PDF
Research progress on semi-continuous casting of magnesium alloys under external field
10
作者 Qi-yu Liao Qi-chi Le +3 位作者 Da-zhi Zhao Lei Bao Tong Wang Yong-hui Jia 《China Foundry》 SCIE EI CAS CSCD 2024年第5期516-524,共9页
High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium... High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed. 展开更多
关键词 semi-continuous casting electromagnetic field ultrasonic field magnesium alloys refinement mechanism
下载PDF
Microstructure and mechanical properties of Co-28Cr-6Mo-0.22C investment castings by current solution treatment
11
作者 Ze-yu Dan Jun Liu +4 位作者 Jian-lei Zhang Yan-hua Li Yuan-xin Deng Yun-hu Zhang Chang-jiang Song 《China Foundry》 SCIE EI CAS CSCD 2024年第4期369-378,共10页
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s... This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods. 展开更多
关键词 CoCrMo alloy investment castings current solution treatment microstructure mechanical property CARBIDE
下载PDF
Characteristics and distribution of microstructures in high pressure die cast alloys with X-ray microtomography:A review
12
作者 Hai-dong Zhao Xue-ling Wang +2 位作者 Qian Wan Wen-hui Bai Fei Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期427-444,共18页
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ... Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys. 展开更多
关键词 high pressure die casting microstructure three-dimensional characteristics DISTRIBUTION Al and Mg alloys
下载PDF
Microstructure and properties of 35 kg large aluminum alloy flywheel housing components formed by squeeze casting with local pressure compensation
13
作者 Ju-fu Jiang Jing Yan +4 位作者 Ying-ze Liu Ning Ge Ying Wang Chang-jie Ding De-chao Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第5期563-576,共14页
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ... The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting. 展开更多
关键词 squeeze casting local pressure compensation aluminum alloy microstructure mechanical properties large flywheel housing components
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
14
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Improvement of microstructure and mechanical properties of Al−Cu−Li−Mg−Zn alloys through water-cooling centrifugal casting technique
15
作者 Qing-bo YANG Wen-jing SHI +4 位作者 Wen LIU Miao WANG Wen-bo WANG Li-na JIA Hu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3486-3503,共18页
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime... The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases. 展开更多
关键词 Al−Cu−Li−Mg−Zn alloy water-cooling centrifugal casting microstructure mechanical properties segregation behavior
下载PDF
Chemical composition analysis on industrial scale ingots and castings of TiAl alloys 被引量:1
16
作者 Xian-fei Ding Yi-qun Zhao +4 位作者 Jia-bin Zuo Xin Feng Hai Nan Yong-feng Liang Yan-qing Su 《China Foundry》 SCIE CAS 2020年第6期441-446,共6页
The chemical composition variation of the TiAl-4722 alloys was examined in a batch of the industrial scale master ingots,and in the corresponding castings prepared by conventional vacuum arc remelting(VAR)combined wit... The chemical composition variation of the TiAl-4722 alloys was examined in a batch of the industrial scale master ingots,and in the corresponding castings prepared by conventional vacuum arc remelting(VAR)combined with induction skull melting(ISM)and investment casting processes.The content changes of major elements and interstitial elements were evaluated based on the chemical analysis at the top and bottom of the ingots and castings.Results show that the contents of C,N,H,Fe and Si have almost no change in the ingots and castings,suggesting that the chemical analysis on these elements can be based on the batch analysis.The O content keeps almost the same in different ingots,but exhibits relatively large differences in castings,which was probably influenced by the reaction between the shell mold and the molten alloy,and the spalling of face coat of the shell mold during casting.For the major elements of Al,Nb and Cr,the composition difference between the top and the bottom of the ingots is less than that of the castings.But for the O element,the trend is different,especially for the castings,suggesting that the investment casting is a homogenization process for Cr and Nb,but a differentiation process for O.The contents of major elements in castings fluctuate mainly in the same range as that in the ingots,indicating that the contents of the major elements are controllable during investment casting. 展开更多
关键词 TiAl alloys MELTING castING chemical composition casting ingot
下载PDF
Effects of process parameters on morphology and distribution of externally solidified crystals in microstructure of magnesium alloy die castings 被引量:5
17
作者 Meng-wu Wu Xiao-bo Li +1 位作者 Zhi-peng Guo Shou-mei Xiong 《China Foundry》 SCIE 2018年第2期139-144,共6页
During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process p... During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process parameters on the morphology and distribution of externally solidified crystals(ESCs) in the microstructure of magnesium alloy die castings, such as slow shot phase plunger velocity, delay time of pouring and fast shot phase plunger velocity. On the basis of metallographic observation and quantitative statistics, it is concluded that a lower slow shot phase plunger velocity and a longer delay time of pouring both lead to an increment of the size and percentage of the ESCs, due to the fact that a longer holding time of the melt in the shot sleeve will cause a more severe loss of the superheat. The impingement of the melt flow on the ESCs is more intensive with a higher fast shot phase plunger velocity, in such case the ESCs reveal a more granular and roundish morphology and are dispersed throughout the cross section of the castings. Based on analysis of the filling and solidification processes of the melt during the HPDC process, reasonable explanations were proposed in terms of the nucleation, growth, remelting and fragmentation of the ESCs to interpret the effects of process parameters on the morphology and distribution of the ESCs in the microstructure of magnesium alloy die castings. 展开更多
关键词 magnesium alloy high pressure die casting microstructure externally solidified crystals process parameters
下载PDF
Effect of carrier gases on the entrainment defects within AZ91 alloy castings 被引量:1
18
作者 Tian Li J.M.T.Davies Xiangzhen Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期142-159,共18页
An entrainment defect(also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final cast... An entrainment defect(also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres(i.e., SF6/CO2, SF6/air).The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings. 展开更多
关键词 Magnesium alloy castING Oxide film Bifilm Entrainment defect Reproducibility
下载PDF
Mechanical Evaluation of AZ80 Magnesium Alloy in Cast Wrought Form
19
作者 Peilin Ying Anita Hu +1 位作者 Wutian Shen Henry Hu 《Journal of Materials Science and Chemical Engineering》 2024年第4期119-125,共7页
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co... Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. . 展开更多
关键词 Squeeze casting Wrought Magnesium alloy AZ80 POROSITY Tensile Prop-erties
下载PDF
Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field
20
作者 Shiping WU Bangsheng LI +3 位作者 Jingjie GUO Chengjun ZHANG Jun JIA Hengzhi FU 《China Foundry》 SCIE CAS 2004年第2期89-93,共5页
The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyz... The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns. 展开更多
关键词 traveling magnetic field thin-walled casting Al alloy mold-filling numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部