Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising nex...Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.展开更多
Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effe...Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries.展开更多
The development of electrocatalysts with high catalytic activity is conducive to enhancing polysulfides adsorption and reducing activation energy of polysulfides conversion, which can effectively reduce polysulfide sh...The development of electrocatalysts with high catalytic activity is conducive to enhancing polysulfides adsorption and reducing activation energy of polysulfides conversion, which can effectively reduce polysulfide shuttling in Li-S batteries. Herein, a novel catalyst NiCo-MoO x /rGO (rGO = reduced graphene oxides) with ultra-nanometer scale and high dispersity is derived from the Anderson-type polyoxometalate precursors, which are electrostatically assembled on the multilayer rGO. The catalyst material possesses dual active sites, in which Ni-doped MoO x exhibits strong polysulfide anchoring ability, while Co-doped MoO x facilitates the polysulfides conversion reaction kinetics, thus breaking the Sabatier effect in the conventional electrocatalytic process. In addition, the prepared NiCo-MoO x /rGO modified PP separator (NiCo-MoO x /rGO@PP) can serve as a physical barrier to further inhibit the polysulfide shuttling effect and realize the rapid Li+ migration. The results demonstrate that Li-S coin cell with NiCo-MoO x /rGO@PP separator shows excellent cycling performance with the discharge capacity of 680 mAh·g^(−1) after 600 cycles at 1 C and the capacity fading of 0.064% per cycle. The rate performance is also impressive with the remained capacity of 640 mAh·g^(−1) after 200 cycles even at 4 C. When the sulfur loading is 4.0 mg·cm^(−2) and electrolyte volume/sulfur mass ratio (E/S) ratio is 6.0 μL·mg^(−1), a specific capacity of 830 mAh·g^(−1) is achieved after 200 cycles with a capacity decay of 0.049% per cycle. More importantly, the cell with NiCo-MoO x /rGO@PP separator exhibits cycling performance under wide operating temperature with the reversible capacities of 518, 715, and 915 mAh·g^(−1) after 100 cycles at −20, 0, and 60 °C, respectively. This study provides a new design approach of highly efficient catalysts for sulfur conversion reaction in Li-S batteries.展开更多
Covalent organic frameworks(COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two-or three-dimensional crystalline orga...Covalent organic frameworks(COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two-or three-dimensional crystalline organic structures. Generally, it is preferable to use symmetric and rigid building blocks to construct highly crystalline COFs with desired topology. On the other hand, the incorporation of chiral functional moieties in the building blocks would open up new applications such as asymmetric catalysis and chiral separation. This mini review highlights the principle strategies in the design and synthesis of chiral COFs. The interesting and potential applications of these chiral COFs for asymmetric catalysis and chiral separation are also summarized.This mini review aims to provide an up-to-date advancement of chiral COFs for asymmetric catalysis and chiral separation.展开更多
Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and...Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and intensification.This review focuses on bi-functional catalytic particles which also serve as sorbents/adsorbents or heat suppliers in the scheme of various thermo-chemical processes,enabling inherent separation or energy conservation within single-step operation.Bi-functional particles applied for integration of reaction and separation including sorption-enhanced hydrogen production and integrated capture and catalytic conversion processes are reviewed in detail,providing insights into material design and key performance indicators.On the other hand,bi-functional particles applied for integration of reaction and non-thermal radiation heating,including electrothermal and photothermal assisted heterogeneously catalyzed reactions,are also reviewed,with emphasis on the material property and energy efficiency improvement.These bi-functional particles show broad adaptability and feasibility in various reactions operated in integrated and intensified schemes,affording huge potentials for further improving productivity and efficiency in thermo-chemical processes.展开更多
To improve the electrochemical activity of S electrodes in Li-S batteries,the synergistic electrocatalysis mechanism of Co_(0.4)Ni_(1.6)P with Ni and Co bimetal interactions is clarified.The alternating crystal struct...To improve the electrochemical activity of S electrodes in Li-S batteries,the synergistic electrocatalysis mechanism of Co_(0.4)Ni_(1.6)P with Ni and Co bimetal interactions is clarified.The alternating crystal structure of Co and Ni regulates the adsorption and decomposition energy of Co_(0.4)Ni_(1.6)P to polysulfides and has the bidirectional catalysis for the Li_(2)S_(1-2)deposition/decomposition process.Co_(0.4)Ni_(1.6)P can promote the breaking of the S-S bond of Li_(2)S_(4) and decrease the decomposition energy barrier of Li_(2)S.This regulation accelerates the discharge/charge reaction between S,polysulfides,and Li_(2)S and improves the kinetics of the S electrodes.The 1st,100^(th),and 200^(th) discharge capacity densities at 0.1 mA cm^(-2) of the S electrodes with a high sulfur loading were 1,405,987.2,and 828.4 m Ah gS^(-1),respectively.The bidirectional catalytic mechanism is a novel idea for improving the electrochemical performance of Li-S batteries.展开更多
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff...Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.展开更多
中长链甘油三酯(medium and long-chain triacylglycerols,MLCT)是一类具有特殊理化性质和营养功能的结构脂质。随着MLCT在食品、医药、保健品、母乳脂等行业中的需求不断增长,酶法制备MLCT的研究也逐渐成为热点。文章对MLCT的酶合成策...中长链甘油三酯(medium and long-chain triacylglycerols,MLCT)是一类具有特殊理化性质和营养功能的结构脂质。随着MLCT在食品、医药、保健品、母乳脂等行业中的需求不断增长,酶法制备MLCT的研究也逐渐成为热点。文章对MLCT的酶合成策略,包括对合成途径、脂肪酶种类、催化反应体系和产品分离纯化等方面进行了总结、分析和探讨,以期为MLCT的酶法制备的研究与应用提供参考。展开更多
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei...Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.展开更多
LTA(Linde type A)结构类型的分子筛是早期通过人工合成得到的沸石分子筛之一。目前,工业化的LTA型分子筛即A型分子筛的硅铝比较低,尽管它在吸附和分离等过程中被大量应用,但较差的酸催化活性和水热稳定性限制了其进一步的应用。高硅LT...LTA(Linde type A)结构类型的分子筛是早期通过人工合成得到的沸石分子筛之一。目前,工业化的LTA型分子筛即A型分子筛的硅铝比较低,尽管它在吸附和分离等过程中被大量应用,但较差的酸催化活性和水热稳定性限制了其进一步的应用。高硅LTA型分子筛具有比低硅的A型分子筛更好的热/水热稳定性,且在吸附分离以及催化等领域具有独特的应用潜力。本文综述并讨论了自1966年以来高硅LTA型分子筛的合成体系,重点集中在近70年来的发展,包括无机体系和有机体系,针对不同的合成体系以及硅铝比,阐述了其合成机理并对合成方法的优缺点进行了评价。讨论了高硅LTA型分子筛在吸附分离以及催化领域的应用与研究进展,对未来LTA型分子筛的发展与应用进行了展望,并指出深入掌握晶化机理,开发简单的合成体系,廉价的结构导向剂将是高硅LTA型分子筛研究的重点。展开更多
Rechargeable aluminum-sulfur(Al-S)batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity,good safety,abundant natural reserves,and low cost of Al and S.Howeve...Rechargeable aluminum-sulfur(Al-S)batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity,good safety,abundant natural reserves,and low cost of Al and S.However,the research progress of Al-S batteries is limited by the slow kinetics and shuttle effect of soluble polysulfides intermediates.Herein,an interconnected free-standing interlayer of iron sin-gle atoms supported on porous nitrogen-doped carbon nanofibers(FeSAs-NCF)on the separator is developed and used as both catalyst and chemical barrier for Al-S batteries.The atomically dispersed iron active sites(Fe-N_(4))are clearly identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption near-edge structure.The Al-S battery with the FeSAs-NCF shows an improved specific capacity of 780 mAh g^(−1)and enhanced cycle stability.As evidenced by experimental and theoretical results,the atomically dispersed iron active centers on the separator can chemically adsorb the polysulfides and accelerate reaction kinetics to inhibit the shuttle effect and promote the reversible conversion between aluminum polysulfides,thus improving the electrochemical performance of the Al-S battery.This work provides a new way that can not only promote the conversion of aluminum sulfides but also suppress the shuttle effect in Al-S batteries.展开更多
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium...The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs.展开更多
基金support of the National Natural Science Foundation of China(No.21773188,No.22179109)central universities fundamental research fund(XDJK2019AA002)Chongqing Natural Science fund(cstc2020jcyj-bshx0047,cstc2021jcyj-bsh0173).
文摘Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.
基金supported by the National Natural Science Foundation of China(22078228)。
文摘Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries.
基金the National Natural Science Foundation of China(No.52172264)the Natural Science Foundation of Hunan Province of China(Nos.2021JJ10060 and 2022GK2033).
文摘The development of electrocatalysts with high catalytic activity is conducive to enhancing polysulfides adsorption and reducing activation energy of polysulfides conversion, which can effectively reduce polysulfide shuttling in Li-S batteries. Herein, a novel catalyst NiCo-MoO x /rGO (rGO = reduced graphene oxides) with ultra-nanometer scale and high dispersity is derived from the Anderson-type polyoxometalate precursors, which are electrostatically assembled on the multilayer rGO. The catalyst material possesses dual active sites, in which Ni-doped MoO x exhibits strong polysulfide anchoring ability, while Co-doped MoO x facilitates the polysulfides conversion reaction kinetics, thus breaking the Sabatier effect in the conventional electrocatalytic process. In addition, the prepared NiCo-MoO x /rGO modified PP separator (NiCo-MoO x /rGO@PP) can serve as a physical barrier to further inhibit the polysulfide shuttling effect and realize the rapid Li+ migration. The results demonstrate that Li-S coin cell with NiCo-MoO x /rGO@PP separator shows excellent cycling performance with the discharge capacity of 680 mAh·g^(−1) after 600 cycles at 1 C and the capacity fading of 0.064% per cycle. The rate performance is also impressive with the remained capacity of 640 mAh·g^(−1) after 200 cycles even at 4 C. When the sulfur loading is 4.0 mg·cm^(−2) and electrolyte volume/sulfur mass ratio (E/S) ratio is 6.0 μL·mg^(−1), a specific capacity of 830 mAh·g^(−1) is achieved after 200 cycles with a capacity decay of 0.049% per cycle. More importantly, the cell with NiCo-MoO x /rGO@PP separator exhibits cycling performance under wide operating temperature with the reversible capacities of 518, 715, and 915 mAh·g^(−1) after 100 cycles at −20, 0, and 60 °C, respectively. This study provides a new design approach of highly efficient catalysts for sulfur conversion reaction in Li-S batteries.
基金supported by the Singapore Academic Research Fund(RG112/15,RG19/16)
文摘Covalent organic frameworks(COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two-or three-dimensional crystalline organic structures. Generally, it is preferable to use symmetric and rigid building blocks to construct highly crystalline COFs with desired topology. On the other hand, the incorporation of chiral functional moieties in the building blocks would open up new applications such as asymmetric catalysis and chiral separation. This mini review highlights the principle strategies in the design and synthesis of chiral COFs. The interesting and potential applications of these chiral COFs for asymmetric catalysis and chiral separation are also summarized.This mini review aims to provide an up-to-date advancement of chiral COFs for asymmetric catalysis and chiral separation.
基金supported by the National Natural Science Foundation of China(Grant Nos.22078106,22008044)Guangdong Natural Science Foundation(Grant No.2017A030312005).
文摘Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and intensification.This review focuses on bi-functional catalytic particles which also serve as sorbents/adsorbents or heat suppliers in the scheme of various thermo-chemical processes,enabling inherent separation or energy conservation within single-step operation.Bi-functional particles applied for integration of reaction and separation including sorption-enhanced hydrogen production and integrated capture and catalytic conversion processes are reviewed in detail,providing insights into material design and key performance indicators.On the other hand,bi-functional particles applied for integration of reaction and non-thermal radiation heating,including electrothermal and photothermal assisted heterogeneously catalyzed reactions,are also reviewed,with emphasis on the material property and energy efficiency improvement.These bi-functional particles show broad adaptability and feasibility in various reactions operated in integrated and intensified schemes,affording huge potentials for further improving productivity and efficiency in thermo-chemical processes.
文摘To improve the electrochemical activity of S electrodes in Li-S batteries,the synergistic electrocatalysis mechanism of Co_(0.4)Ni_(1.6)P with Ni and Co bimetal interactions is clarified.The alternating crystal structure of Co and Ni regulates the adsorption and decomposition energy of Co_(0.4)Ni_(1.6)P to polysulfides and has the bidirectional catalysis for the Li_(2)S_(1-2)deposition/decomposition process.Co_(0.4)Ni_(1.6)P can promote the breaking of the S-S bond of Li_(2)S_(4) and decrease the decomposition energy barrier of Li_(2)S.This regulation accelerates the discharge/charge reaction between S,polysulfides,and Li_(2)S and improves the kinetics of the S electrodes.The 1st,100^(th),and 200^(th) discharge capacity densities at 0.1 mA cm^(-2) of the S electrodes with a high sulfur loading were 1,405,987.2,and 828.4 m Ah gS^(-1),respectively.The bidirectional catalytic mechanism is a novel idea for improving the electrochemical performance of Li-S batteries.
基金the financial support from the National Natural Science Foundation of China(22090062,21922810,21825802,22138003,22108083,and 21725603)the Guangdong Pearl River Talents Program(2021QN02C8)+3 种基金the Science and Technology Program of Guangzhou(202201010118)Zhejiang Provincial Natural Science Foundation of China(LR20B060001)National Science Fund for Excellent Young Scholars(22122811)China Postdoctoral Science Foundation(2022M710123)。
文摘Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.
文摘中长链甘油三酯(medium and long-chain triacylglycerols,MLCT)是一类具有特殊理化性质和营养功能的结构脂质。随着MLCT在食品、医药、保健品、母乳脂等行业中的需求不断增长,酶法制备MLCT的研究也逐渐成为热点。文章对MLCT的酶合成策略,包括对合成途径、脂肪酶种类、催化反应体系和产品分离纯化等方面进行了总结、分析和探讨,以期为MLCT的酶法制备的研究与应用提供参考。
基金the National Natural Science Foundation of China(20990222,21006047,21706117,and 21706118)the Natural Science Foundation of Jiangsu(BK20170978 and BK20170970)+1 种基金the State Key Laboratory of Material-Oriented Chemical Engineering(ZK201609)the Innovative Research Team Program by the Ministry of Education of China(IRT17R54).
文摘Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.
文摘LTA(Linde type A)结构类型的分子筛是早期通过人工合成得到的沸石分子筛之一。目前,工业化的LTA型分子筛即A型分子筛的硅铝比较低,尽管它在吸附和分离等过程中被大量应用,但较差的酸催化活性和水热稳定性限制了其进一步的应用。高硅LTA型分子筛具有比低硅的A型分子筛更好的热/水热稳定性,且在吸附分离以及催化等领域具有独特的应用潜力。本文综述并讨论了自1966年以来高硅LTA型分子筛的合成体系,重点集中在近70年来的发展,包括无机体系和有机体系,针对不同的合成体系以及硅铝比,阐述了其合成机理并对合成方法的优缺点进行了评价。讨论了高硅LTA型分子筛在吸附分离以及催化领域的应用与研究进展,对未来LTA型分子筛的发展与应用进行了展望,并指出深入掌握晶化机理,开发简单的合成体系,廉价的结构导向剂将是高硅LTA型分子筛研究的重点。
基金financially supported by the National Natural Science Foundation of China (No.51874197)Natural Science Foundation of Shanghai (Nos.21ZR1429400,22ZR1429700)
文摘Rechargeable aluminum-sulfur(Al-S)batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity,good safety,abundant natural reserves,and low cost of Al and S.However,the research progress of Al-S batteries is limited by the slow kinetics and shuttle effect of soluble polysulfides intermediates.Herein,an interconnected free-standing interlayer of iron sin-gle atoms supported on porous nitrogen-doped carbon nanofibers(FeSAs-NCF)on the separator is developed and used as both catalyst and chemical barrier for Al-S batteries.The atomically dispersed iron active sites(Fe-N_(4))are clearly identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption near-edge structure.The Al-S battery with the FeSAs-NCF shows an improved specific capacity of 780 mAh g^(−1)and enhanced cycle stability.As evidenced by experimental and theoretical results,the atomically dispersed iron active centers on the separator can chemically adsorb the polysulfides and accelerate reaction kinetics to inhibit the shuttle effect and promote the reversible conversion between aluminum polysulfides,thus improving the electrochemical performance of the Al-S battery.This work provides a new way that can not only promote the conversion of aluminum sulfides but also suppress the shuttle effect in Al-S batteries.
基金National Nature Science Foundation of China,Grant/Award Number:21908124。
文摘The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs.