Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ...The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts inclu...The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.展开更多
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe...Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.展开更多
Our work reported that the so-called pure carbon nanotubes(CNTs)can be synthesized without metallic catalyst by chemical vapor deposition(CVD).The as-prepared CNTs have average diameter of 50 nm and length over severa...Our work reported that the so-called pure carbon nanotubes(CNTs)can be synthesized without metallic catalyst by chemical vapor deposition(CVD).The as-prepared CNTs have average diameter of 50 nm and length over several microns.Analysis of intermediate objects in the products indicates that their formation mechanism follows the wire-to-tube model.Besides,according to thermodynamic analysis of the driving force combing with experimental results,we find that the thermal gradient can effectively favor the formation of CNTs in our metallic catalyst-free CVD.展开更多
Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicit...Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicity, short time and the avoidance of the use of organic solvents and catalysts.展开更多
Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and p...Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and products formation from the oxidation of the primary and the secondary hydroxyl groups are understood by combining the model calculations and DFT calculations, aiming to discriminate the corresponding dominant Pt active sites. The Pt(100) facet is demonstrated to be the dominant active sites for the glycerol conversion and the products formation from the two routes. The insights revealed here could shed new light on fundamental understanding of the Pt particle size effects and then guiding the design and optimization of Pt-catalyzed base-free oxidation of glycerol toward targeted products.展开更多
Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, ...Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated. The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiOx support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2 (w/w) since the highest yield of hydrogen was obtained over this catalyst.展开更多
An efficient and simple method for the preparation of 5-arylamino-1H-tetrazole and 1-aryl-5-amino-1H-tetrazole derivatives is reported using aluminum(Ⅲ) hydrogensulfate(Al(HSO4)3) as an effective heterogeneous ...An efficient and simple method for the preparation of 5-arylamino-1H-tetrazole and 1-aryl-5-amino-1H-tetrazole derivatives is reported using aluminum(Ⅲ) hydrogensulfate(Al(HSO4)3) as an effective heterogeneous catalyst from secondary arylcyanamides. Generally,when the substitution in arylcyanamide is strongly electron-withdrawing the position of equilibrium would shift toward the isomer of 1-aryl-5-amino-1H-tetrazole(B) and as the electron-donating of substituent increased,the position of equilibrium is shifted toward the isomer of 5-arylamino-1H-tetrazole(A).The present methodology offers several advantages,such as excellent yields,short reaction times,easy work-up and greener conditions.展开更多
Tirazine based microporous polymeric (TMP) network was found to be an efficient metal-free catalyst for the epoxidation of styrene. The reactions were performed in water as an environmentally benign medium using H2O2 ...Tirazine based microporous polymeric (TMP) network was found to be an efficient metal-free catalyst for the epoxidation of styrene. The reactions were performed in water as an environmentally benign medium using H2O2 as a green oxidant at ambient temperature. The reaction afforded higher yield with 90% conversion of styrene and 98% selectivity to styrene oxide in 6 h. The triazine based microporous polymeric network can be readily recovered and reused up to 4 cycles without significant loss in catalytic activity and selectivity.展开更多
Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants.However,most studies focus on nano-size and/or polycrystalline catalysts,suffering from aggregat...Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants.However,most studies focus on nano-size and/or polycrystalline catalysts,suffering from aggregation and neutralization of internal piezoelectric field caused by polydomains.Here we report a single crystal ZnO of large size and few bulk defects crafted by a hydrothermal method for piezocatalytic hydrogen generation from pure water.It is noteworthy that single-side surface areas of both original as-prepared ZnO and Ga-doped ZnO bulk crystals are larger than 30 cm^(2).The high quality of ZnO and Ga-doped ZnO bulks are further uncovered by high-resolution transmission electron microscope(HRTEM),photoluminescence(PL)and X-ray diffraction(XRD).Remarkably,an outstanding hydrogen production rate of co-catalyst-free Ga-doped ZnO bulk crystal(i.e.,a maximum rate of 5915μmol h^(-1) m^(-2))is observed in pure water triggered by ultrasound in dark,which is over 100 times higher than that of its powder counterpart(i.e.,52.54μmol h^(-1) m^(-2)).The piezocatalytic performance of ZnO bulk crystal is systematically studied in terms of varied exposed crystal facet,thickness and conductivity.Different piezocatalytic performances are attributed to magnitude and distribution of piezoelectric potential,revealed by the finite element method(FEM)simulation.The density functional theory(DFT)calculations are employed to investigate the piezocatalytic hydrogen evolution process,indicating a strong H_(2)O adsorption and a low energy barrier for both H_(2)O dissociation and H2 generation on the stressed Znterminated(0001)ZnO surface.展开更多
Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious...Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious-metal-free electrocatalysts with superior activity and long-term stability.Tremendous efforts have been made in exploring electrocatalysts to reduce the energy barriers and improve catalytic efficiency.This review summarizes different categories of precious-metal-free electrocatalysts developed in the past 5 years for alkaline water splitting.The design strategies for optimizing the electronic and geometric structures of electrocatalysts with enhanced catalytic performance are discussed,including composition modulation,defect engineering,and structural engineering.Particularly,the advancement of operando/in situ characterization techniques toward the understanding of structural evolution,reaction intermediates,and active sites during the water splitting process are summarized.Finally,current challenges and future perspectives toward achieving efficient catalyst systems for industrial applications are proposed.This review will provide insights and strategies to the design of precious-metalfree electrocatalysts and inspire future research in alkaline water splitting.展开更多
Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally ...Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.展开更多
A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with t...A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with their counterpart Co-impregnated zeolite-based catalysts.Successful transformation of solid raw materials to targeted zeolite was confirmed by XRD,SEM,STEM,and N2 physisorption analysis.An in-depth study of acidic strength and acidic site distribution was conducted by NH3-TPD and Py-IR spectroscopy.Acidic strength showed a pivotal role in defining product range.Co@S1,with the weakest acidic strength of silicalite-1 among three types of zeolites,evaded over-cracking of product and exhibited the highest gasoline and isoparaffin selectivity(≈70%and 30.7%,respectively).Moreover,the solvent-free raw material grinding route for zeolite synthesis accompanies several advantages like the elimination of production of wastewater,high product yield within confined crystallization space,and elimination of safety concerns regarding high pressure due to the absence of the solvent.Facileness and easiness of the solvent-free synthesis route together with promising catalytic performance strongly support its application on the industrial scale.展开更多
Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a h...Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.展开更多
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-...The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.展开更多
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3804500)the National Natural Science Foundation of China(Grant No.52202352,22335006)+4 种基金the Shanghai Municipal Health Commission(Grant No.20224Y0010)the CAMS Innovation Fund for Medical Sciences(Grant No.2021-I2M-5-012)the Basic Research Program of Shanghai Municipal Government(Grant No.21JC1406000)the Fundamental Research Funds for the Central Universities(Grant No.22120230237,2023-3-YB-11,22120220618)the Basic Research Program of Shanghai Municipal Government(23DX1900200).
文摘The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金supported by the National Science and Technology Support Project of China(2013BAC11B03)the National Natural Science Foundation of China(21401054,21476065,21273067)the Graduate Student Scientific Research Innovation Fund Project of Hunan Province(CX2015B082)~~
文摘The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.
基金supported by the German Federal Ministry of Education and Research (BMBF) for the CarboKat Project (03X0204D) within the scope of the Inno.CNT Alliance
文摘Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.
基金supported by the Creative Research Group of National Science Foundation of China(Grant No.50721003)the Foundation of the Ministry of Education of China for Returned Scholars(Grant No.2005383)
文摘Our work reported that the so-called pure carbon nanotubes(CNTs)can be synthesized without metallic catalyst by chemical vapor deposition(CVD).The as-prepared CNTs have average diameter of 50 nm and length over several microns.Analysis of intermediate objects in the products indicates that their formation mechanism follows the wire-to-tube model.Besides,according to thermodynamic analysis of the driving force combing with experimental results,we find that the thermal gradient can effectively favor the formation of CNTs in our metallic catalyst-free CVD.
基金the Natural Science Foundation of China(No.20272047,20572086)the Natural Science Foundation of Gansu Province(No.3ZS051-A25-001)Key Laboratory of Eco-Environment-Related Polymer Material(Northwest Normal University),Ministry of Education of China.
文摘Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicity, short time and the avoidance of the use of organic solvents and catalysts.
基金financially supported by the Natural Science Foundation of China (21776077)the Shanghai Natural Science Foundation (17ZR1407300 and 17ZR1407500)+5 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Shanghai Rising-Star Program (17QA1401200)the Open Project of State Key Laboratory of Chemical Engineering (SKLChe-15C03)the State Key Laboratory of Organic– Inorganic Composites (oic-201801007)the Fundamental Research Funds for the Central Universities (222201718003)the 111 Project of the Ministry of Education of China (B08021)
文摘Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and products formation from the oxidation of the primary and the secondary hydroxyl groups are understood by combining the model calculations and DFT calculations, aiming to discriminate the corresponding dominant Pt active sites. The Pt(100) facet is demonstrated to be the dominant active sites for the glycerol conversion and the products formation from the two routes. The insights revealed here could shed new light on fundamental understanding of the Pt particle size effects and then guiding the design and optimization of Pt-catalyzed base-free oxidation of glycerol toward targeted products.
文摘Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated. The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiOx support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2 (w/w) since the highest yield of hydrogen was obtained over this catalyst.
文摘An efficient and simple method for the preparation of 5-arylamino-1H-tetrazole and 1-aryl-5-amino-1H-tetrazole derivatives is reported using aluminum(Ⅲ) hydrogensulfate(Al(HSO4)3) as an effective heterogeneous catalyst from secondary arylcyanamides. Generally,when the substitution in arylcyanamide is strongly electron-withdrawing the position of equilibrium would shift toward the isomer of 1-aryl-5-amino-1H-tetrazole(B) and as the electron-donating of substituent increased,the position of equilibrium is shifted toward the isomer of 5-arylamino-1H-tetrazole(A).The present methodology offers several advantages,such as excellent yields,short reaction times,easy work-up and greener conditions.
文摘Tirazine based microporous polymeric (TMP) network was found to be an efficient metal-free catalyst for the epoxidation of styrene. The reactions were performed in water as an environmentally benign medium using H2O2 as a green oxidant at ambient temperature. The reaction afforded higher yield with 90% conversion of styrene and 98% selectivity to styrene oxide in 6 h. The triazine based microporous polymeric network can be readily recovered and reused up to 4 cycles without significant loss in catalytic activity and selectivity.
基金the financial support from the National Natural Science Foundation of China(No.21905317)the financial support from the National Natural Science Foundation of China(No.91833301)the Youth Talent Promotion Project from China Association for Science and Technology。
文摘Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants.However,most studies focus on nano-size and/or polycrystalline catalysts,suffering from aggregation and neutralization of internal piezoelectric field caused by polydomains.Here we report a single crystal ZnO of large size and few bulk defects crafted by a hydrothermal method for piezocatalytic hydrogen generation from pure water.It is noteworthy that single-side surface areas of both original as-prepared ZnO and Ga-doped ZnO bulk crystals are larger than 30 cm^(2).The high quality of ZnO and Ga-doped ZnO bulks are further uncovered by high-resolution transmission electron microscope(HRTEM),photoluminescence(PL)and X-ray diffraction(XRD).Remarkably,an outstanding hydrogen production rate of co-catalyst-free Ga-doped ZnO bulk crystal(i.e.,a maximum rate of 5915μmol h^(-1) m^(-2))is observed in pure water triggered by ultrasound in dark,which is over 100 times higher than that of its powder counterpart(i.e.,52.54μmol h^(-1) m^(-2)).The piezocatalytic performance of ZnO bulk crystal is systematically studied in terms of varied exposed crystal facet,thickness and conductivity.Different piezocatalytic performances are attributed to magnitude and distribution of piezoelectric potential,revealed by the finite element method(FEM)simulation.The density functional theory(DFT)calculations are employed to investigate the piezocatalytic hydrogen evolution process,indicating a strong H_(2)O adsorption and a low energy barrier for both H_(2)O dissociation and H2 generation on the stressed Znterminated(0001)ZnO surface.
基金This study was funded by the Australian Research Council(FT170100224)the Australian Renewable Energy Agency+1 种基金National Natural Science Foundation of China(21825501)the Tsinghua University Initiative Scientific Research Program.
文摘Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious-metal-free electrocatalysts with superior activity and long-term stability.Tremendous efforts have been made in exploring electrocatalysts to reduce the energy barriers and improve catalytic efficiency.This review summarizes different categories of precious-metal-free electrocatalysts developed in the past 5 years for alkaline water splitting.The design strategies for optimizing the electronic and geometric structures of electrocatalysts with enhanced catalytic performance are discussed,including composition modulation,defect engineering,and structural engineering.Particularly,the advancement of operando/in situ characterization techniques toward the understanding of structural evolution,reaction intermediates,and active sites during the water splitting process are summarized.Finally,current challenges and future perspectives toward achieving efficient catalyst systems for industrial applications are proposed.This review will provide insights and strategies to the design of precious-metalfree electrocatalysts and inspire future research in alkaline water splitting.
文摘Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.
基金the financial support from the Zhejiang Province Natural Science Foundation(LY19B060001)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2018-K25)the Foundation of Zhejiang University of Science and Technology(2019QN18,2019QN23)~~
文摘A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with their counterpart Co-impregnated zeolite-based catalysts.Successful transformation of solid raw materials to targeted zeolite was confirmed by XRD,SEM,STEM,and N2 physisorption analysis.An in-depth study of acidic strength and acidic site distribution was conducted by NH3-TPD and Py-IR spectroscopy.Acidic strength showed a pivotal role in defining product range.Co@S1,with the weakest acidic strength of silicalite-1 among three types of zeolites,evaded over-cracking of product and exhibited the highest gasoline and isoparaffin selectivity(≈70%and 30.7%,respectively).Moreover,the solvent-free raw material grinding route for zeolite synthesis accompanies several advantages like the elimination of production of wastewater,high product yield within confined crystallization space,and elimination of safety concerns regarding high pressure due to the absence of the solvent.Facileness and easiness of the solvent-free synthesis route together with promising catalytic performance strongly support its application on the industrial scale.
文摘Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.
基金supported by the National Basic Research Program of China (2011CB201400 and 2011CB808700)the National Natural Science Foundation of China (21373019, 21173008 and 21433001)
文摘The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.
基金supported by Unité de Catalyse et Chimie du Solide (UCCS)sponsor of scholarship: China scholarship council and School of Environment, Tsinghua University