The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were i...The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were investigated in this study.The results showed the drastic effects of barium addition on the physicochemical properties and performances of the catalyst.The solid-phase reaction between alumina and BaO formed BaAl2O4,which re-constructed the alumina structure,resulting in a decrease in the specific surface area and an increase in the resistance of metallic Ni to sintering.The addition of barium was also beneficial for enhancing the catalytic activity,resulting from the changed catalytic reaction network.The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of the acetic acid steam reforming indicated that barium could effectively suppress the accumulation of the reaction intermediates of carbonyl,formate,and C=C functional groups on the catalyst surface,attributed to its relatively high ability to cause the gasification of these species.In addition,coking was considerably more significant over the Ba-Ni/Al2O3 catalyst.Moreover,the Ba-Ni/Al2O3 catalyst was more stable than the Ni/Al2O3catalyst,owing to the distinct forms of coke formed (carbon nanotube form over the Ba-Ni/Al2O3 catalyst,and the amorphous form over the Ni/Al2O3 catalyst).展开更多
Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselec...Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselectivity was affected by the bulkiness of R and the thiazolidine ring systems in their molecules.展开更多
The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectiv...The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.展开更多
The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additiv...The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.展开更多
Modest to high diastereoselectivites have been observed in the conjugate addition of functionalized alcohols to chiral (E)-nitroalkene 1 depending on the presence of metal catalysts at low tempertwre. The resultS indi...Modest to high diastereoselectivites have been observed in the conjugate addition of functionalized alcohols to chiral (E)-nitroalkene 1 depending on the presence of metal catalysts at low tempertwre. The resultS indicated that the anti-form had been preferred in all cases.展开更多
A series of vanadyl pyrophosphate catalyst (VPO) modified by different additives have been prepared with the aim to study the performance for selective conversion of n-butane to maleic anhydride(MA). The addition ...A series of vanadyl pyrophosphate catalyst (VPO) modified by different additives have been prepared with the aim to study the performance for selective conversion of n-butane to maleic anhydride(MA). The addition of various promoters improved the catalytic performance remarkably on both activity and selectivity. The correlation of activity and selectivity of the catalysts with their structure has been discussed. The increase in BET surface areas and surface redox sites leads to an enhanced activity. However, good selectivity can only be obtained on those surfaces with suitable surface acid sites.展开更多
The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be use...The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be used to explain the effects.展开更多
To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,lo...To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,low fabrication costs,and mass production advantage capability.Recently,we have developed additive process in fabricating circuit on flexible substrate through catalyst induced copper electroless deposition(ELD)method.The additive processes that integrated printing,activation,and metallization were applied to produce fine-line circuit with 5μm line width.The sample with ultraviolet(UV)activation shows better conductive property in comparison with the sample without activation after electroless deposited process.Accordingly,the results indicated that the reaction of catalyst induced electroless copper plating strongly depends on UV activation.The fine-line circuit exhibits a narrow line width circuit(around 5μm),lower resistance(6.2μΩ·cm),and mass production with low pollution in comparison with lithographic processes(with photoresist and acid pollution)with a high throughput system(R2R system)for the applications of double side flexible printed circuit board(FPCB).展开更多
Chiral quaternary phosphonium ion-pair catalysis showcases a distinctive catalytic and stereoinductive mode arising from the synergy between ionic and noncovalent interactions.Over recent decades,this methodology has ...Chiral quaternary phosphonium ion-pair catalysis showcases a distinctive catalytic and stereoinductive mode arising from the synergy between ionic and noncovalent interactions.Over recent decades,this methodology has been widely adopted to facilitate enantioselective nucleophilic addition reactions,including conjugate addition,Henry reaction,Mannich reaction,Strecker reaction,and hydrophosphonylation.This strategy has been successfully applied to the synthesis of numerous structurally diverse and multifunctionalized molecules,featuring challenging stereogenic centers.This minireview specifically highlights the accomplishments in asymmetric nucleophilic addition facilitated by chiral quaternary phosphonium catalysts.Its purpose is to cultivate interest among researchers,encouraging more engagement in this field and establishing quaternary phosphonium ion-pair catalysis as a potent and dependable tool for synthetic and pharmaceutical chemists.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry re...In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry reforming were evaluated using Box-Behnken design in order to optimize methane conversion, H_2/CO ratio and the catalyst deactivation. Different catalysts were prepared by co-impregnation method and characterized by XRD, BET, H_2-TPR, FESEM and TG/DTA analyses. The results revealed that copper addi- tion improved the catalyst reducibility. Promoted catalyst with low amounts of Cu gave higher activity and stability with high resistance to coke deposition and agglomeration of active phase especially during the reaction. However catalysts with high amounts of Cu were less active and rather deactivated due to the active sites sintering as well as Ni covering by Cu-enriched phase. The optimal conditions were de- termined by desirability function approach as 10 wt% of Ni, 0.83 wt% of Cu at 750℃. CH_4 conversion of 95.1%, H_2/CO ratio of 1 and deactivation of 1.4% were obtained experimentally under optimum conditions, which were in close agreement with the values oredicted hv the developed model.展开更多
A series of aromatic acids has been tested as additives for the platinum-catalyzed hydrosilylation of styrene with triethoxysilane. Both excellent conversion of styrene and selectivity in favor of the ,β-adduct were ...A series of aromatic acids has been tested as additives for the platinum-catalyzed hydrosilylation of styrene with triethoxysilane. Both excellent conversion of styrene and selectivity in favor of the ,β-adduct were achieved using aminobenzoic acids as additive. Moreover, the use of 4-aminobenzoic acid led to significantly superior enhancement in both catalytic activity and selectivity among the tested aminobenzoic acids. Indeed, 100% conversion of styrene and 98.4% selectivity in favor of the β-adduct were obtained. Additionally, hydrosilylations of various alkenes with a variety of platinum catalysts have also been tested, and in each case the conversion of substrate and the selectivity of the β-adduct were promoted by using 4-aminobenzoic acid as additive.展开更多
In the current study simultaneous reactions of hydrodesulfurization(HDS) of dibenzothiophene(DBT) and reforming of methanol in a micro-autoclave reactor were studied over bi-metallic(Co-Mo/Al2O3 and Ni-Mo/Al2O3) and t...In the current study simultaneous reactions of hydrodesulfurization(HDS) of dibenzothiophene(DBT) and reforming of methanol in a micro-autoclave reactor were studied over bi-metallic(Co-Mo/Al2O3 and Ni-Mo/Al2O3) and tri-metallic(Pd-Co-Mo/Al2O3 and Pd-Ni-Mo/Al2O3) catalyst systems which were prepared by incipient impregnation method.In situ hydrogen utilization and low Pd loadings were the major targets of this study.For comparison purpose,catalytic activity was separately determined for both the methanol reforming and HDS of DBT reactions as well.Ni based catalysts were confirmed with better activity than Co ones for both the reactions with Pd promoted ones ranking at the top i.e.Pd-Ni-Mo/Al2O3 > Ni-Mo/Al2O3 > Pd-Co-Mo/Al2O3 > Co-Mo/Al2O3 where Pd-Ni-Mo/Al2O3 showed 91% DBT conversion at 380 ℃ and 12 h reaction time.Some of the selected organic additives on catalytic activity were tested for their effect toward HDS reaction which was unique with close relation to their chemical nature.Reaction products were quantitatively and qualitatively analyzed via HPLC and GC-MS techniques respectively which helped in elucidating reaction mechanism.展开更多
High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion ...High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion of 100% at -8.9℃, while Au/CeO2/Fe2O3 converted CO completely at -16.1 ℃. Even having been calcined at 500 ℃, Au/Fe2O3 still exhibited significant catalytic activity, achieving full conversion of CO at 61.6℃. The catalyst with a low Au load of 0.5% could convert CO completely at room temperature and kept the activity unchanged for at least 150 h. N2 adsorption-desorption measurements show that the crystalline supports possessed a high specific surface area of about 200 m2/g. Characterizations of X-ray diffraction and transmission electron microscopy indicate that gold species were highly dispersed as nano or sub-nano particles on the supports. Even after the catalyst was calcined at 500 ℃, the Au particles remained in a nano-size of about 6--10 nm. X-ray photoelectron spectra reveal that the supported Au existed in metallic state Au0. The modification of Au/Fe2O3 by CeO2 proved to be beneficial to the inhibition of crystallization of Fe2O3 and the stabilization of gold particles in dispersed state, consequently promoting catalytic activity.展开更多
基金supported by the National Natural Science Foundation of China(No.51876080)the Strategic International Scientific and Technological Innovation Cooperation Special Funds of National Key Research and Development Program of China(No.2016YFE0204000)+3 种基金the Program for Taishan Scholars of Shandong Province Governmentthe Recruitment Program of Global Experts(Thousand Youth Talents Plan)the Natural Science Foundation of Shandong Province(ZR2017BB002)the Key Research and Development Program of Shandong Province(2018GSF116014)。
文摘The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were investigated in this study.The results showed the drastic effects of barium addition on the physicochemical properties and performances of the catalyst.The solid-phase reaction between alumina and BaO formed BaAl2O4,which re-constructed the alumina structure,resulting in a decrease in the specific surface area and an increase in the resistance of metallic Ni to sintering.The addition of barium was also beneficial for enhancing the catalytic activity,resulting from the changed catalytic reaction network.The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of the acetic acid steam reforming indicated that barium could effectively suppress the accumulation of the reaction intermediates of carbonyl,formate,and C=C functional groups on the catalyst surface,attributed to its relatively high ability to cause the gasification of these species.In addition,coking was considerably more significant over the Ba-Ni/Al2O3 catalyst.Moreover,the Ba-Ni/Al2O3 catalyst was more stable than the Ni/Al2O3catalyst,owing to the distinct forms of coke formed (carbon nanotube form over the Ba-Ni/Al2O3 catalyst,and the amorphous form over the Ni/Al2O3 catalyst).
基金This work was financially supported by the State Key Laboratory of Elemento-Organic Chemistry,Nankai University.
文摘Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselectivity was affected by the bulkiness of R and the thiazolidine ring systems in their molecules.
文摘The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.
基金the National Natural Science Foundation of China, Contract No. 59774022.]
文摘The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.
文摘Modest to high diastereoselectivites have been observed in the conjugate addition of functionalized alcohols to chiral (E)-nitroalkene 1 depending on the presence of metal catalysts at low tempertwre. The resultS indicated that the anti-form had been preferred in all cases.
基金Partially Supported by National Education Commission of China.
文摘A series of vanadyl pyrophosphate catalyst (VPO) modified by different additives have been prepared with the aim to study the performance for selective conversion of n-butane to maleic anhydride(MA). The addition of various promoters improved the catalytic performance remarkably on both activity and selectivity. The correlation of activity and selectivity of the catalysts with their structure has been discussed. The increase in BET surface areas and surface redox sites leads to an enhanced activity. However, good selectivity can only be obtained on those surfaces with suitable surface acid sites.
文摘The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be used to explain the effects.
基金the ministry of economic affairs in Taiwan under the contract number:J353J11100,is gratefully acknowledged.
文摘To response the demand for fine line in electronic products,additive manufacturing process integrated printing techniques and deposited methods to reach fine line circuit,with the merits of reduced material wastage,low fabrication costs,and mass production advantage capability.Recently,we have developed additive process in fabricating circuit on flexible substrate through catalyst induced copper electroless deposition(ELD)method.The additive processes that integrated printing,activation,and metallization were applied to produce fine-line circuit with 5μm line width.The sample with ultraviolet(UV)activation shows better conductive property in comparison with the sample without activation after electroless deposited process.Accordingly,the results indicated that the reaction of catalyst induced electroless copper plating strongly depends on UV activation.The fine-line circuit exhibits a narrow line width circuit(around 5μm),lower resistance(6.2μΩ·cm),and mass production with low pollution in comparison with lithographic processes(with photoresist and acid pollution)with a high throughput system(R2R system)for the applications of double side flexible printed circuit board(FPCB).
基金Financial support was provided by the National Natural Science Foundation of China(grant nos.22222109,21921002,22101189,21897002,and 31972290)the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS202101)+2 种基金the Natural Science Foundation of Sichuan Province(grant nos.2023NSFSC1921,2022NSFSC1181,and 24NSFSC6590)the Fundamental Research Funds from Sichuan University(grant no.2020SCUNL108)the Fundamental Research Funds for the Central Universities.
文摘Chiral quaternary phosphonium ion-pair catalysis showcases a distinctive catalytic and stereoinductive mode arising from the synergy between ionic and noncovalent interactions.Over recent decades,this methodology has been widely adopted to facilitate enantioselective nucleophilic addition reactions,including conjugate addition,Henry reaction,Mannich reaction,Strecker reaction,and hydrophosphonylation.This strategy has been successfully applied to the synthesis of numerous structurally diverse and multifunctionalized molecules,featuring challenging stereogenic centers.This minireview specifically highlights the accomplishments in asymmetric nucleophilic addition facilitated by chiral quaternary phosphonium catalysts.Its purpose is to cultivate interest among researchers,encouraging more engagement in this field and establishing quaternary phosphonium ion-pair catalysis as a potent and dependable tool for synthetic and pharmaceutical chemists.
基金sponsored financially by the National Natural Science Foundation of China (No.91545103 and 21273071)the Science and Technology Commission of Shanghai Municipality (13JC1401902)
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
文摘In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry reforming were evaluated using Box-Behnken design in order to optimize methane conversion, H_2/CO ratio and the catalyst deactivation. Different catalysts were prepared by co-impregnation method and characterized by XRD, BET, H_2-TPR, FESEM and TG/DTA analyses. The results revealed that copper addi- tion improved the catalyst reducibility. Promoted catalyst with low amounts of Cu gave higher activity and stability with high resistance to coke deposition and agglomeration of active phase especially during the reaction. However catalysts with high amounts of Cu were less active and rather deactivated due to the active sites sintering as well as Ni covering by Cu-enriched phase. The optimal conditions were de- termined by desirability function approach as 10 wt% of Ni, 0.83 wt% of Cu at 750℃. CH_4 conversion of 95.1%, H_2/CO ratio of 1 and deactivation of 1.4% were obtained experimentally under optimum conditions, which were in close agreement with the values oredicted hv the developed model.
基金Supported by the National High Technology Research and Development Program of China (2006AA03A134)Zhejiang Province Program (2008C14041)
文摘A series of aromatic acids has been tested as additives for the platinum-catalyzed hydrosilylation of styrene with triethoxysilane. Both excellent conversion of styrene and selectivity in favor of the ,β-adduct were achieved using aminobenzoic acids as additive. Moreover, the use of 4-aminobenzoic acid led to significantly superior enhancement in both catalytic activity and selectivity among the tested aminobenzoic acids. Indeed, 100% conversion of styrene and 98.4% selectivity in favor of the β-adduct were obtained. Additionally, hydrosilylations of various alkenes with a variety of platinum catalysts have also been tested, and in each case the conversion of substrate and the selectivity of the β-adduct were promoted by using 4-aminobenzoic acid as additive.
基金Fundamental Research Foundation of Sinopec(X505015)
文摘In the current study simultaneous reactions of hydrodesulfurization(HDS) of dibenzothiophene(DBT) and reforming of methanol in a micro-autoclave reactor were studied over bi-metallic(Co-Mo/Al2O3 and Ni-Mo/Al2O3) and tri-metallic(Pd-Co-Mo/Al2O3 and Pd-Ni-Mo/Al2O3) catalyst systems which were prepared by incipient impregnation method.In situ hydrogen utilization and low Pd loadings were the major targets of this study.For comparison purpose,catalytic activity was separately determined for both the methanol reforming and HDS of DBT reactions as well.Ni based catalysts were confirmed with better activity than Co ones for both the reactions with Pd promoted ones ranking at the top i.e.Pd-Ni-Mo/Al2O3 > Ni-Mo/Al2O3 > Pd-Co-Mo/Al2O3 > Co-Mo/Al2O3 where Pd-Ni-Mo/Al2O3 showed 91% DBT conversion at 380 ℃ and 12 h reaction time.Some of the selected organic additives on catalytic activity were tested for their effect toward HDS reaction which was unique with close relation to their chemical nature.Reaction products were quantitatively and qualitatively analyzed via HPLC and GC-MS techniques respectively which helped in elucidating reaction mechanism.
基金Supported by the Henkel Professorship of Tongji University,China
文摘High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion of 100% at -8.9℃, while Au/CeO2/Fe2O3 converted CO completely at -16.1 ℃. Even having been calcined at 500 ℃, Au/Fe2O3 still exhibited significant catalytic activity, achieving full conversion of CO at 61.6℃. The catalyst with a low Au load of 0.5% could convert CO completely at room temperature and kept the activity unchanged for at least 150 h. N2 adsorption-desorption measurements show that the crystalline supports possessed a high specific surface area of about 200 m2/g. Characterizations of X-ray diffraction and transmission electron microscopy indicate that gold species were highly dispersed as nano or sub-nano particles on the supports. Even after the catalyst was calcined at 500 ℃, the Au particles remained in a nano-size of about 6--10 nm. X-ray photoelectron spectra reveal that the supported Au existed in metallic state Au0. The modification of Au/Fe2O3 by CeO2 proved to be beneficial to the inhibition of crystallization of Fe2O3 and the stabilization of gold particles in dispersed state, consequently promoting catalytic activity.
基金国家自然科学基金资助项目(22072172)国家杰出青年科学基金资助项目(21825204)+2 种基金中国科学院青年创新促进会资助项目(Y2021056)榆林学院与大连清洁能源国家实验室合作基金资助项目(YLU-DNL Fund 2022007)山西省科技创新团队专项资金资助项目(202304051001007)。